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RESUME

La théorie du genre des formes quadratiques, des groupes nilpotents, des
corps algébriques et encore d'autres concepts est essentiellement une théorie lo-
cale-globale qui a comme objectif 1'€tude de la question suivante: Dans quelle
mesure des données locales déterminent-elles des objets globaux (principe de Hasse)?
La notion du genre fut introduite par Gauss en 1801 mais ce fut Hasse qui en 1923

en reconniit son caractére local-global.

A l'origine du développement, on trouve un théoréme de Fermat &noncé dans une
lettre adressée i Mersenne (1640): un nombre premier impair p est la somme uni-
que de deux carrés si et seulement si p =1 modulo 4 . La démonstration fut
donnée par Euler, 114 ans plus tard, et Euler ainsi que Lagrange et Legendre trou-
vérent d'autres théorémes de ce type. Motivé par ces travaux sporadiques, Gauss
en 1801, étudie d'une fagon systématique la représentabilité d'un entier par une
forme quadratique binaire quelconque & coefficients entiers. Dans ce but, Gauss
ajoute aux théoremes sur 1'&quivalence, sur les classes et sur le discriminant,
déji obtenus par Lagrange en 1773, les notions de genre et de composition des for-
mes sur lesquelles il démontre des théorgmes de grande profondeur et d'une haute
portée. La théorie des formes & 3 variables, initi&e par Gauss et appliquée par
lui-méme au genre des formes binaires, est poursuivie par Seeber, et est &tendue
aux formes quadratiques & un nombre quelconque de variables par Eisenstein, Smith,

Poincaré et Minkowski. Dans une annonce des travaux de Seeber, Gauss (1831) donne
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aussi une interprétation gé€ométrique de sa théorie des formes quadratiques binaires
positives. Cette théorie est &tendue aux formes quadratiques positives 3 un nom-
bre quelconque de variables par Minkowski (1891). Elle conduit finalement i une
théorie des formes quadratiques rationnelles en termes d'espaces quadratiques dé-
veloppés par Witt (1937), ainsi qu'd une théorie des formes quadratiques entidres
en termes de modules quadratiques développés systématiquement par Eichler (1952).
Dans son livre, Eichler développe d'abord la thorie locale des complétés p-adiques
des modules quadratiques afin d'obtenir des résultats globaux pour ceux-ci. Il ob-
tient ainsi une th&orie analogue mais beaucoup plus compliquée que la théorie ra-
tionnelle de Hasse, dans laquelle les nombres p-adiques, présentés par Hensel en
1899, sont appliqués pour la premi&re fois avec grand succ@s, en leur assurant
ainsi une place importante en mathématique. En s'appuyant sur 1'interprétation du
genre que donne Hasse en termes de nombres p-adiques, Kneser et Borel ont pu ca-
ractériser le genre d'une forme quadratique entiBre en termes d'adéles du groupe
orthogonal associé. Cette caractérisation a préparé le chemin 3 1'étude du genre
d'objets encore plus généraux, tels que par exemple le genre des groupes algébri-
ques ou le genre des modules. Ce sont ces généralisations qui ont conduit i la

définition du genre des groupes nilpotents donnée par Pickel et Mislin.

La th&orie du genre de Gauss a encore joué un rdle trés important dans un do-
maine trés différent., Dedekind (1894) transposa la théorie de Gauss sur les for-
mes quadratiques binaires de discriminant d en langage d'idéaux d'un corps qua-
dratique de m@me discriminant. Les théordmes fondamentaux de Gauss sur le genre,
reformulés maintenant pour les corps quadratiques et généralisés aux corps de nom-
bres cycliques de degré premier jouaient alors un r6le clé dans 1'édification de
la théorie des corps de classes par Hilbert, Takagi et Hasse. Plus tard (1951),
Hasse donna une interprétation de la théorie du genre des corps quadratiques en
termes de la théorie des corps de classes qui fut généralisée aux corps abéliens

par Leopoldt (1953) et aux corps de nombres quelconques par Fr¥hlich (1959).
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0. INTRODUCTION

Recently, P. Pickel [Pi-1971] and G. Mislin [Mis-1971] independently and
Hilton-Mislin [H-M-1975] introduced the notion of a genus for nilpotent groups and
P. Hilton gave an account of this theory within the fast growing theory of loca-
lization of nilpotent groups lately [Hi-1975] (see also [H-M-R-1975]). It might
therefore be of some interest to trace back this notion of a genus to its origin
and to look at some of its many interesting facets that developed during the last
175 years in fields closely related as quadratic forms, class field theory, alge-

braic groups and nilpotent groups.

1. THE GENUS OF QUADRATIC FORMS

1.1 Fermat [Fe-1640] stated in a letter to Mersenne that

Theorem 1.1. An odd prime number p 1is the sum of two (unique) squares (of

positive integers), p = x2 +y2 (x,yeN) if and only if p =1 (mod. 4).

The first proof of this theorem appeared more than a century later and was
given by Euler [Eu-1754]. Whether or not p is decomposable into a sum of two

squares depends therefore only on the congruence class of p modulo 4 .

1.2 Gauss in his fundamental treatise 'Disquisitiones arithmeticae'" [Ga-1801]

solved completely the general problem:

What are the congruence conditions for an {ntegral binary quadratic form
f = (a,b,c) = ax2 + 2bxy + cy2 to represent an integer n , i.e., when does

ax2 + 2bxy + cy2 = n with integers a , b , ¢ have integer solutions x , y .

He also found explicit formulae for the number of solutions in the case
where the genus of f (see definition 2.5) contains only one equivalence class of

forms (see below).

Let T = (a,B,v,8) be the substitution x = ax' + By' , y = yx' + &y’

where o , B, vy, § are integers. Then
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ax2 + 2bxy + cy2 = a'x'2 + 2b'x'y' + c'y'2

where a' = aaz + 2bay + ch , b' = aoB + b(ad+by) + cy§ ,

c! = aBz + 2bBRS + c62 . Gauss called the two forms f = (a,b,c) and
f' = (a',b',c') equivalent, we shall write f ~ f' , if the substitution
T = (a,B,Y,8) satisfies ad - By = 21 , and properly equivalent, we write f = f',

if of - By = +1 [Ga-1801, Art. 1577 .

In modern matrix notation (not yet employed by Gauss; it was only introduced
by Sylvester and Cayley around 1855) this can be formulated in the following way.
Associate to f = (a,b,c) the symmetric integral square matrix Mf = <§ 2) and
to T = (a,B,Y,8) the integral square matrix T = ($ §>' If
Tt = (g g) denotes the transpose of T and det T = ad - By the determinant of

T then we have

Proposition 2.1, f o f' (respectively f = f') if and only if

M., = TthT with det T = %1 (respectively det T

£ +1)

We also note that if X = (;) then ax2 + Zbxy + cy2 = xthx . This yields

immediately

Proposition 2.2, If f o~ f' then det M. = det Mgy » and £ and f' re-

f
present the same integers n .

One has only to note that the inverse of T is also an integer square matrix

if det T = #1 .

Gauss calls d = b2 - ac = -det Mf the determinant of f = (a,b,c)

[Ga-1801, Art. 1541 . He showed that the number of proper equivalence classes

of forms with the same determinant is finite [Ga-1801, Art. 223] , a result that
goes already back to Lagrange [Lag-1773]1 . The same holds true for equivalence
classes, and more generally for equivalence classes of n-ary (see 1.5) quadratic

forms (see [Eis-1847, p. 118-9] and also [Eic-1952, Satz 12.7]).

Next, Gauss considers the conditions for an integer n to be represented

by the form f . He defines f = (a,b,c) to be paimitive if the greatest common
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divisor (g.c.d.) of a ,b and c¢ is one [Ga-1801, Art. 226] . Of course, if
f is primitive and f o f' then also f' 1is primitive. The equivalence class
of f is then said to be primitive also. The same applies to proper equivalence

classes. Then Gauss proves the following remarkable property [Ga-1801, Art. 229] .

Theorem 2.3. Let £ = (a,b,c) be a primitive form and p a prime dividing
the determinant: p|d , d = b2 - ac . Let further denote by

f(Zz) = {m==ax21-2bxy-+cy2] (x,y) € Zz} the set of integers represented by f .

Then the m ¢ f(ZZ) not divisible by p are all either quadratic residues

modulo p or quadratic non-residues modulo p .

Proof§. Suppose that m , m' ¢ f(Zz) and that m and m' are not divisi-
ble by p, i.e. m = ax2 + 2Zbxy + cy2 and m' = ax'2 + 2bx'y' + cy'2 for some

X,¥,x',¥' € Z and p 1 mm' . Then

mm' (axx' +b(xy'+yx"') +cyy')2 d(xy'~yx')2.

Hence mm' 1is a quadratic residue modulo d and hence modulo p and m and m'

are either both quadratic residues or quadratic non-residues modulo p .
Remark 2.4.

a) If 4| d then the same argument shows that mm' = 1 (mod 4), i.e. the
me f(Zz) are all either =1 (mod 4) or =3 (mod 4) . If 8 [d then
mm' =1 (mod 8 and the m ¢ f(ZZ) are all either =1 or =3 or=5 or =7

(mod 8)

b) The odd primes not dividing the determinant do not furnish a characteri-

zation of the set f(ZZ) but the two powers of the even prime p =2, 4 =2

3

and 8 = 2° do characterize it in the following way (see [Ga-1801, Art. 229])

f = (a,b,c) 1is still supposed to be primitive and d = b2 - ac .

bl) If d = 3 (mod 4) then the odd m ¢ f(Zz) are all either =1 or = 3

(mod 4)
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b2) If d = 2 (mod 8 then the odd m ¢ f(ZZ) are all either = 1,7
or = 3,5 (mod 8) .

b3) If d =6 (mod 8) then the odd m ¢ £(Z°) are all either = 1,3
or = 5,7 (mod 8)

One verifies, still by the same argument, that in the case bl) one must have the

condition mm' = 1 (mod 4) because of the hypothesis that m and m' are odd.
In case b2) one is led to the condition mm' = z1 (mod 8) and in the
case b3) to the condition mm' = 1,3 (mod 8)

The equivalence class (and hence also the proper equivalence class) of a pri-
mitive form f is therefore characterized by t odd charactens (as Gauss called

them) ep PR > , where t is the number of odd prime divisors of d , which
1 t

indicate whether the m ¢ f(Zz) with P I m are quadratic residues modulo P;
(i=1,...,t) or not, and a character €, related to the prime p = 2 (if
d # 1 modulo 4) which expresses a relation modulo 4 (if d = 0,3 modulo 4) or

modulo 8 (if d = 0,2,6 modulo 8)

In Dirichlet's notation [Di-1839, §3] one puts

epi(f) = (%) = (%) = /i) = +1 for Py odd and if m € f(Zz) but P; does

1
not divide m , a and c¢ , where (5—-) is the Legendre symbol( ) . Notice that
i

not both a and ¢ can be divisible by P; if f 1is to be primitive, because

of p; l(b2 -ac) , and that a and ¢ are always represented by f .

M e (pl>= +1 44 m 45 a quadratic residue mod p; and <1>= -1 Aif
i

m 44 a non-resdidue.
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As far as the characters related to the prime 2 are concerned one puts
2

m-1 m--1

ey (5) = (-1) 2 if d4=0,3,4,7 (mod 8) , = (-1) 2 if d = 0,2 (mod 8) and
m-1 m2-1
7 " 78

= (-1) if d= 6 (mod 8) . Notice that in the case d = 0 (mod 8)
we have split the character €, which takes four values, into two characters

m-1 m2-1
e, (£) = (-1) 2 and e, (£) = (-1) 8 cach taking on the two values *1 inde-

1 2

pendently.

Again m can be replaced by either a or c¢ if we suppose that a and ¢
are not both even. Gauss calls such a form properly primitive [Ga-1801, Art. 2261 .
Gauss also remarks [Ga-1801, Art. 2251 , that if the determinant d of a form
f = (a,b,c¢) 1is negative then a and c¢ are both either positive or negative.
In the first case f represents only non-negative numbers. f 1is then said to be
positive. In the second case where a and c are both negative f represents
non-positive numbers only. f is then called negative. For forms with negative
determinant one has therefore an analogue to theorem 2.3 with respect to the ab-

solute value sign.
For forms with negative determinant d we can hence put

+1 if f is positive
€ (f) =
-1 if f 1is negative

where « is said to be the Anfinite prime.
We can now define Gauss' genus [Ga-1801, Art. 231] .

Deginition 2.5. Two properly primitive forms f1 and f, of the same de-

terminant d are in the same genus, in symbols f1 ~ f2 , if ep(fl) = sp(fz)
for all odd primes p dividing d for p=2 (if d $ 1 mod 4) and for

p=e (if d<0)

f1 = f2 implies f1 o~ f2 which implies fl'v f2 . Thus (the equivalence

classes and) the proper equivalence classes of forms are distributed into at most
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2tts genera, where t 1is the number of odd prime divisors of the determinant d

and s = 0,1,2 depending on whether d = 1,5 (mod 8 , d = 2,3,4,6,7 (mod 8) ,
d =0 (mod 8) , and the number of equivalence classes as well as the number of

proper equivalence classes in the same génus is therefore finite.

The form fO = (1,0,-d) of determinant d is called the principal form
its class the principal class and its genus the principal genus. Clearly one has
EP(fo) = +1 for all p|d, for p=2 and p = ® so that the principal genus is

characterized by the fact that all its characters are +1 .

1.3 Let us recall that a primitive form f = (a,b,c) is called properly primitive
if a and c are not both even. All forms equivalent to a properly primitive
form f are also properly primitive [Ga-1801, Art. 1611 and the whole equivalence
class of f is then said to be properly primitive. Gauss showed further that

each non-empty genus contains the same number of properly primitive equivalence
classes for a given determinant d [Ga-1801, Art. 252], that half of the possible

+
}t s (where s = 0,1,2) correspond to an empty genus
P

character values in {#1
(those are determined by means of the reciprocity law [Ga-1801, Art. 263-4], which
yields essentially one linear relation among the characters, explicitely

e Ep(f) = +1 , where p runs through the odd primes pld , 2 (if d # 1 mod 4)
and <« (if d < 0) (see Section 3.3, in particular Theorem 3.7)), and that the
other half of the possible character values do correspond to non-empty properly

primitive genera [Ga-1801, Art. 287]. To prove this last result Gauss initiates

the theory of ternary quadratic fomms.
1.4 The analogeous study of ternary integrnal quadnatic §oams

3
a,.x.x., = f(x XX ) to which one can associate the symmetric integral
i,j=1 ij7i7j 1 3

matrix Mg = (a..) (Gauss writes (311 a22 a33> , see [Ga-1801, Art. 267]) is
1) a3 83, 3,

much more complicated, mainly because the set f(Z°) of integers represented by

f 1is more difficult to describe. Eisenstein [Eis-1847] and Smith [Sm-1867-1]

showed that f(Zs) not only depends on (quadratic residue) characters of the
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ternary form f but also on those of the adjoint ternary form F of f which

corresponds to the adjoint matrix adj Mf = MF of Mf .

Let f be a primitive ternary form (i.e. the g.c.d. of all the coefficients
in Mf is one) and denote by Q the greatest common divisor of the coefficients
in the adjoint matrix MF , i.e. § 1is the g.c.d. of the minor determinants of
Mf . We put further d = -det Mf = -QZA and F = Qg where d 1is again the
detenminant of £ [Ga-1801, Art. 267] and where g is said to be the primifive
adjoint form of f . Notice that A 1is an integer and that -QA° , G =Af and
f are the determinant, the adjoint and the primitive adjoint form of g respec-

tively, so that the relation between f and g is entirely reciprocal

[Sm-1867-1, Art. 2] and [Eis-1847].

Two forms f and f£' are again said to be in the same genus [Sm-1867-1,
Art. 8] if they have the same characters (and same d and same § )} . Equivalent
forms (defined as in proposition 2.1) have equivalent adjoint forms [Ga-1801,
Art. 269] and hence the same § and A and the same characters, that is two

equivalent forms belong to the same genus.
Smith now shows [Sm-1867-1, Art. 12]

Theonem 4.1, Two primitive ternary quadratic forms f. and f' have the
same determinant, the same invariants Q and A and the same characters, i.e. f
and f' are in the same genus, if and only if there exists a transformation
T = (tij) with rational coefficients whose denominators are prime to 2QA and

= TM,T .

with determinant det T = 1 such that Mf, £

Later, Speiser proved the analogeous theorem for binary quadratic forms

[Sp-19121.

1.5 Eisenstein, Smith, Poincaré and Minkowski arrived at similar criteria in the
case of two integrnal n-ary quadratic forms £ and f£' thereby making use of all
the k-th adjoint forms (Smith also uses the term comitant of the k-th species,

see [Sm-18641) of f . These are the quadratic forms corresponding to the k-th
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adjoint (k=1,...,n-1}) of the matrix Mf = (aij) belonging to the .infegral
n
n-ary quadratic fonm £ = 7§ 2 5%;%; - The k-th adjoint or k-th derived matrix
i,j=1
of Mf is the (ﬂ)-square matrix whose entries are the k-rowed minors of Mg .

Poincaré [Po-1882] and Minkowski [Min-18861] define the genus in this general case

as follows,

Definition 5.1. Two n-ary quadratic forms f and g lie in the same genus,

in symbols f~ g , if

(1) there exists a real matrix T such that Mg = TthT , i.e. £ and ¢

have the same Sylvester-index, in symbols i(f) = i(g) ,

(ii) there exists for each integer m an integral matrix Tm such that

Mg = T;Mme (modulo m) identically for all coefficients, and det Tm = 1 (modulo m).
Then Minkowski states [Min-18861.

Theorem 5.2. Two n-ary quadratic forms f and g belong to the same

genus, f~ g , if and only if
(1) i) =i(g) ,

(ii) det Mf = det Mg =d,

(iii) Mg = TthT (mod 2d) and det T= 1 (mod 2d) for an integer matrix T .

This follows from a theorem of Smith [Sm-1867-2, P. 5161 which generalizes theorem
4.1 to the case of n-ary quadratic forms. Smith [Sm-1867-2, Chap. 1] and
Minkowski [Min-1884, Kap. XIJ] also describe the genera by means of characters
similar to the cases n =2 and 3 . For their work they were jointly awarded

the Grand Prix of the French Academy in Paris in 1884.

The definition 5.1 of the genus by Poincaré and Minkowski involves infinitely
many conditions, namely congruence conditions modulo all prime powers pS for all

primes p . By virtue of theorem 5.2 only finitely many conditions are essentially
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needed, namely the congruence conditions modulo the prime powers dividing 2d .

Moreover one can dispense with the condition det Tm =1 (mod m) by virtue

of the following:

Proposition 5.3. If f and g are two quadratic forms with matrices Mg
and Mg and with the same determinant det Mf = det Mg = d such that for every

f

then there exists an integer matrix T0 satisfying Mg = TngT0 (mod ps) and

prime power pS there exists an integer matrix T with Mg = M, T (mod ps)

det T0 =1 (mod ps) for all prime powers ps

Proof. Let pr be the highest power of p dividing 2d . By hypothesis

there exists an integer matrix T1 so that Mg = T;Mle {mod pr+s) for any
s ¢ N . Taking determinants we get d = (det T1)2 d (mod pr+s) , hence

d(det T-1)(det T +1) = 0 (mod p*™5) and therefore det T, = #1 (mod p°) . If

1 1

det T1 =1 (mod ps) we put T1 =T, and we are done. In the opposite case,

we use the fact that there always exists an integer matrix A such that

M = AthA (mod ps) and det = -1 (mod ps) for any prime power pS and any
n-ary quadratic form f . This last fact is easily verified for the standard
form f' = xi + ... 4 xi_l + axﬁ (where a 1is either one if d 1is a square, or
a non-square modulo ps if d 1is not a square). Simply take A : Xy > -Xy,

Xp Xy for i =2,...,n . If f 1is any other n-ary form, then f 1is equivalent
to such a standard form f' modulo pS [Se-1973, prop. 5, Chap. IV, 1], i.e.
there exists an integral matrix B with Mf, = BthB (mod ps) . We remark that
B is invertible modulo ps , hence det B is a unit modulo ps and therefore

p does not divide det B =b . If C is an integral matrix with

Mg, = C™M,,C (mod p®) and det C = -1 (mod p°) then we take A = BC(agB ™)

where q is chosen such that qB'1

is an integral matrix and q is prime to p
(we can take for example q = b = det B) and a is a number with the property
that aq =1 (mod ps) . Then A has the required properties with respect to f

and we can put T0 = TlA .

The genus can now be characterized in the following way:




16 On zhe Development of the Genus 04 Quadratic Forms

Theorem 5.4. Two n-ary quadratic forms f and g belong to the same genus

if and only if

(&9 i(f) = i(g) , i.e. there exists a real matrix T such that

_ mt
My = TMGT

(ii) for every prime p and every prime power ps there exists an integral

. = ot -]
t T uch that M = T M_T odul
matrix pS s a s psMeTps (modulo p~)

1.6 Hensel [Hen-1913] in the case n = 2 and 3 and Hasse [Ha-1923-1-27 in the
general case applied the p-adic numbers introduced by Hensel [Hen-1913] to qua-
dratic forms, whereby Hasse discovered the Local-global-principle (which says
that a property holds in Q if and only if it holds in all a(P) for all primes
p and for p = ® , see below) first for the representability of a rational
number by a rational quadratic form [Ha-1923-1] and then for the rational equi-
valence of two rational quadratic forms [Ha-1923-2], a principle which turned out

to be very important in number theory.

Hensel called a rational number r = % (a,be 2) ALocally integral at the
prime number p , if p does not divide b, and he said that 1 = %~ is a Local
it i -2 1_b
unit if r = b and r- 3

divide a nor b .

are locally integral at p , i.e. if p does not

The p-adic numbens Q(p) » where p is an integer prime number, consists
of the set of formal power series in p with rational coefficients which are

locally integral at p and with only finitely many terms of negative exponent:

N _ -s -1 2 __i
Q(p) -{a_sp t...ta_p +ajtaptagp +...|ai-cieQ and p,{ci} . Two

p-adic numbers as formal power series in p are said to be equal if they are

congruent modulo all powers of p . If for example (a) and (b} are p-adic

o0 0
numbers, i.e. (a) = ] anpn and (b) = J bnpn (some or all of the coeffi-
n=-s n=-s

cients can be zero) and (a)k and (b)k are their approximations modulo pk+1 ,

i,e. (a)k = a_sp‘s + el + akpk and (b)k = b_sp_S ool + bkpk then (a) = (b)
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if and only if (a), = (b), (mod p'1) for all keN .

In Q one defines an addition and a multiplication which is ordinary
)

addition and multiplication of power series and also ordinary addition and multi-

plication modulo all powers of p . If for example

_ -5 N -s -
(a) = a_p "t ...tagtap + ..., ()= b_sp + ...t b0 + blp + ... € Q(p)
then

(@) + (®) = () = (a_#b_Jp ™" + ... + (agtby) + (a;+b)p + ...
and

(@ + () = (@ = (a_b_Jp %+ ...+ (a_bra_ b

sl S_1+...+aob0+...+asb_s)

+ (a_sbs+1+...+as+lb_s)p + ...
are their p-adic sum and product respectively and one verifies that

1 1

() = (a), + (b), (mod 1) and (@), = (a), + (b)) (mod "1y for a11 k .

The coefficients E; in the p-adic development of a p-adic number (a)

can be so determined that 0 < E; < p with EA € Z . We then call

(a) = Z;sp—s t ol Eb + Eip + ... the reduced representation or the neduced

development of (a)

Every p-adic number (a) admits a unique reduced representation, i.e.
its reduced coefficients Z; U)Saﬁ <p) , Eﬁ € Z are uniquely determined and

they can be found successively by congruence relations modulo all powers of p .

-S

The formal power series (a) = a Pt ... taygtapt ... is not conver-

0

gent in the ordinary sense (absolute value topology) but in the p-adic sense

(p-adic topology) which expresses simply the fact that a p-adic number indicates

a congruence behaviour modulo all powers of p . If (a) = E}pr + ... is a

p-adic number given by its reduced representation, i.e. if pr

is the highest
power of p dividing (a) then the p-adic value | !p of (a) is

(a) =-l— , so that the -adic value of (a) is small if (a) 1is divisible
p T P
P
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by a high power of p . Two numbers (a) and (b) are close in the p-adic
topology if the p-adic value of their difference is small, that is if they are

congruent modulo a high power of p .

The subring of of all formal power series with no coefficients of
g (p) P

negative index is called the ring of p-adic integers and is denoted by
- b

N r _ i )
Z(p) = {a0+-alp+-...+-arp +oaee | a; === ¢€Q, p/ ci} . The multiplicative sub

- i
group of Z(p) of elements whose constant coefficient a, is not divisible by
p is called the group of p-adic units and shall be denoted by
- b,

_ n _ i . :
U(p) = {a04-alp te..tap o+ e a; = == €Q, p/ c¢;»a, a local unit} . It is

~1
the group of invertible elements in Z

(»)

All rational numbers of the form j%- , where a and n are natural numbers
and p 1is a fixed prime, belong to a(p) and they are characterized by the fact
that their p-adic development is finite. But also all negative and all rational
numbers belong to a(p) as every rational number admits a unique reduced p-adic
development. The reduced 7-adic development of l—, for instance, can be found

3

in the following manner. Put %-: a, + a17 + a272 + ... and determine the

0

coefficients a, successively modulo all powers of 7, i.e. 3a0 =1 (mod 7)

hence aj =5, 3+5+3+a7=21 (mod7°) hence 2+ 3a, =0 (mod 7) and

0 1
therefore a; = 4, 3 «5+3 4 .+74 3a272 =1 (mod 73) implies
2+ 3a2 =0 (mod 7) thus a, = 4 , and so on, and we get
% =5+4 ¢ 7+ 4 . 72 + ... M

Q 1is therefore contained in Q(p) for all primes p in much the same way
as Q is contained in the real numbers R which are often denoted by Q(m)
In brief, Q(p) is the completion of Q with respect to the p-adic topology in

the same way as R = Q(w) is the completion of Q with respect to the ordinary

) pnothen (non-neduced) development of

L
3
1.2_:2_ ,_ 1 _ 2, . : .2
3 €T °" -2 = 17 = ~2(1+7+7°+...) = =2 - 2 7 -2 77 - ..

4is the following "geometric series"
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absolute value topology. We just mention en passant that Q(p) is locally

compact and that Z. and U(p) are compact subgroups of Q(p) with respect

@)
to the p-adic topology.

In the language of p-adic numbers the following defintion of the genus can

now be given

n
Definition 6.1. Two n-ary quadratic forms £ = aijxixj and
i,5=1
n
g = Z b..x.x. with associated symmetric matrices M, = (a..) and
i,5=1 137175 f ij

M = (bij) are in the same genus, f~g , if

(i) Mg = TthT for a real invertible matrix T ;

(ii) Mg = T;Mpr for an integrally invertible matrix TP with integer
p-adic coefficients for all primes p .

1.7 1In connection with the reduction theory of quadratic n-ary forms

Minkowski [Min-18911] associates with a positive (definite) quadratic form

aijxixj a lattice Lf in R" in the following way, an idea that
=1

H
1]
el e =]

i,
already goes back to Gauss [Ga-1831] in the case of binary and ternary positive

quadratic forms.

As f is a positive definite form there exists an (invertible) substitution

T with real coefficients such that

2 2
= x! tY _ Frext 1y = fr(x!
) xj P17t e b xg £ (xl,...,xn) ' (x')

1,

f(x) = f(xl,...,xn) = §=1 aijxi

where x = Tx' and where x = (xl,...,xn) , X' = (x',...,xh) . In other words

the matrix M_ can be diagonalized orthonormally over R , In = va = TthT

f

where In is the unit n-square matrix. Interprete now f'(x') as being the

euclidean metric in the real vector space R™ with the natural base

-1 n
ey = (1,0,004,0) 4, +uv e, = (0y0..,0,1} . Put T e = bi e R for

i=1,...,n and L¢ = {x1b1+...+xnbn|xi52} . Lg is called the fLattice in R"
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associated with the positive definite form f . It is unique up to equivalence
(see definition 11.1) that is up to an orthogonal transformation, and one has

<bi,bj> = aij , where < , > stands for the ordinary scalar product (euclidean

X : n
metric) in R~ . Moreover

n
= ] <bi,bj>xixj = <x1b1+...+xnbn,x1b1+...+xnbn> .

f(xl,...,xn) = )
i,j=1

i,

w3

a,.X.Xx,.
1 137

The base bl"" b_ of Lf spans a n-parallelohedron P = IRn/Lf of volume

n
_ -1 _ 1
f) =det T ™ = Tt T

,
1
vol P = (det M,.)?

1.8 Witt [Wi-1937] considers generally any n-ary quadratic form

n
£=£x) = £xp,.ex) = ]
i,j=1

a..x.x, over a field k (i.e. a..ek) of
1) 1] ij

characteristic not 2 as being a (generalized) metric over the vector space ' ,
and he calls the pair (k,f) or (k™,f) a metric vector space over k . If
. . n X N
bl""’bn is any basis over k  he defines (bi,bj)f = aij , where (, )f
denotes the symmetric bilinear form (inner product) associated with f , i.e.
-1 - -
(x1b1+...+xnbn,y1b1+...+ynbn)f-2[f(x1+y1,...,xn+yn) f(xl,...,xn) f(yl,...,yn)] .

A change of basis ¢ = T. (i=1,...,n) corresponds to taking an equivalent

i
n
1 LIRS vl | - - ! 1] 1
form f£f' = ; §_1 aijxixj as follows. If v = x1b1+...+xnbn = XjCt...txic  is
,j=
an arbitrary vector represented with respect to the two bases bl""’bn and
cl,...,c and ¢, = Tb, is a change of basis from the b. to the c. , i.e.
n i i i i
2 t
= = .) = . = TX!
<5 jzl tjibj , where T (tiJ) (tjl) , then X = TX' where
X = (xl,...,xn)t and X' = (xi,...,xﬁ)t are the coordinates of v with respect
to the b. and ¢, .
i i
We require now that
n n
= = = = I x!
(viv)g = £(v) = £(x) = Z_ (bi,bj)fxixj . Z_ (ci,cj)f, x}x
i,j=1 i,3=1

£1(x") = £1(v) = (v,V)
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. e . _ =t - -
and this condition yields Mf, =T MfT where Mf = ((bi,bj)f) = (aij) and
Mg, =((Ci’cj)f'): (aij) so that f' is equivalent to f over k (which means

that the coefficients of the transformation matrix T = (tij) lie in k) .

Conversely, equivalent forms f and f' over k , i.e. those satisfying

va = TthT for an invertible matrix T = (tij) with coefficients in k , cor-

respond to the same metric space with respect to two different bases bl""’bn

and ¢ ¢c. where c, =
n i

IERERY )
J

n e~

_ 2
. tjibj . Furthermore det Mf, = det Mf (det T)" .
1.9 The group of automorphisms of K" preserving the metric f in the vector
space k" is called the orthogonal group of (k",£) associated with f . We

shall denote it by 0, = {Te Aut(k",£) | £(Tv) = £(v) for all vek'} .
£

We can suppose that bl""’bn is the natural basis of (kn,f) . Then
- - — - t -
V= xbitoax b= (x;,..0,x ) =x and O = {TeGL(n,k) | T MfT-Mf} . We

keep in mind that det T = #1 if T e 0p . T is called proper if det T =+1 .

1.10 The definitions and notations of 1.8 and 1.9 can be extended to the case
where k 1is a (commutative unitary) ring of characteristic not 2 . (kn,f) is
then said to be a metrnic module of dimension n . If T is a change of basis

-1

then det T has to be a unit in k,as T is also a matrix over k . We

shall call such a matrix unimodulat.

1.11 Following Eichler [Eic-1952] the theory of integral quadratic forms (over
the integers of an algebraic number field) k , in which every ideal is a princi-
pal ideal, can be translated into the language of lattices in the following

way(l)

() The general case of any algebraic numben field also treated by Eichler .is
much more complicated.
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Let V = (kn,f) be a metric vector space over the algebraic number field

n
k with respect to the quadratic form f = aijxixj over k and let
i,j=1
1
bl""’bn be the natural basis of k™ . Denote by g the integers in k )
g? = {x1b1+...+xnbrl lXi(SQ} is a lattice in k" . In general we call any module

_ . . n, _
L= {x1d1+...+xndn |xie,g, where d,,...,d  is a basis of k } = [dy,....,d 1 a
Lattice in kU .

,¢_ 1 in

Definition 11.1. Two lattices L = [d n

1,...,dn] and K = [cl,...
k" are called equivalent, in symbols L =~ K , if there exists an orthogonal

transformation S e 0f such that L = SK .

Similarly, the two lattices L and K are called properly equivalent, in
symbols L = K, if there exists a proper orthogonal transformation

Se 0p = {Sec0.|det S=+1} such that L = SK .

One can associate with L = [dl,.

with K = [cl,...,cn] the matrix MK = ((ci’cj)f) . Of course,

..,dn] the matrix ML = ((di,dj)f) and

My = ((bi’bj)f) = (aij) = Mf . The matrices M, and M, determine (rational)

L K

quadratic forms fL and fK with coefficients in k (in the sense of 1.2 or

1.5). Clearly Mon determines f .

~

Definition 11,2, £, 1is defined to be equivalent to fy (over g) , in
symbols fL o fK » if there exists an integral unimodular matrix T (i.e. with
coefficients in g and with det T a unit in g) such that MK = TtMLT .

Similarly, f; is properly equivalent to £y (over g) , we write

fL = fK , if there exists a proper integral unimodular matrix T (whose determi-

nant is a positive unit in ¢ ) such that MK = TtMLT .

(1) The coefficients 35 may Lie in k , but we are concerned with the case
where the indeterminates x; and X take values in g .
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This definition is in accordance with 1.8 and 1.10 and generalizes the
definition in 1.2 where k =Q, g=2 and n =2 . Clearly fL does not

depend on the basis b b_ chosen for f , but it does depend on the basis

1"

dl""’dn of L . However, it follows from 1.8 and 1.10 that the equivalence
class of fL is independent of the basis dl”"’dn chosen for L . More

generally we have

K if

Proposition 11,3, L =~ K if and only if fL o~ f Similarly, L

K
and only if fL = fK . In particular L = (E)QF if and only if fL >~ (2)f .

Proof. Let L = [dl,...,dn] , K= [cl,...,c 1, ML = ((di,dj)f) ,

MK = ((ci,cj)f) . If L =K then there exists an orthogonal transformation

n

Se 0 so that L = SK . Put Sci = t,.d,+...+t_.d and T = (t

f 1i71 nin

Scl,...,Scn is a basis of L as well as d

ki)

1,...,dn . Hence T must be integral

and integrally invertible hence unimodular. Furthermore
) ) )
(c:r¢) e = (8¢c.,8¢c.), = t,.d, , t,.d = t,.(d,,d) . t,.
i*vi’f i’vvif \k=l ki'k = £ L|f k=1 221 ki‘vk>Lf L

_ ot
hence MK =T MLT .

Conversely, suppose that MK = TtMLT for an integral unimodular matrix

. tkidk is well

1~

T . Then the linear transformation S defined by Sci =
k

determined and
n n n n
(cpr)e = k§1 221 trildedgds Tey kZ1 “iik = toyde|e = (5¢505¢5)

Hence S € Of .
The proof for proper equivalence runs similarly.

We call again f(L) = {f(x)] x e L} the set of (algebraic) numbers repre-

sented by L and det ML the determinant of L .

Equivalent lattices, L >~ K , represent the same numbers, f(L) = £(K) and

have the same determinant up to a square of a unit. In particular




24 On the Development of the Genus of Quadratic Foams

£(L) = £ (0 if L=g" .

If pcg 1is a prime ideal in g then ER stands for the p-adic numbers
over k (p-adic completion of k) with respect to J . Again 52 can be

defined as the field of formal power series

() = a_s“—s P a_ln'l toagtopt ... in a so called uniformizing element

7 lying in p but not in BZ and where the coefficients are locally integral at

<[

B, that is a; = with integers Bi and Yi € g and p not dividing Yi .

i
One can easily show that KE thus defined does not depend upon the chosen uniform-

izing parameter T ¢ j - EZ (see for instance [Wey-1940]). The p-adic integers

g, and the unit group U  are defined in the same way as for k = Q and one

2 2

has, of course, that k and U =

- o =1 U
2™ ) %7 e eV
B = (p) , where (p) is the ideal generated by the prime number p .

~

if k = Q and

We remark that Hensel introduced the p-adic numbers for algebraic number
fields as analoga of Puiseux-series already 1899 in a short notice in

Jahresbericht der Deut. Math. Ver. Bd. 6, 83-88.

. n .. .
If L = gay t ... tga = [al,...,an] with a; € k (i=1,...,n) is a
. . n - - ~ - R
lattice in k= then we denote by L =ga. + ... +0a =0L the p-adic
B~ e’ ~ % £
extension of L which is a so called local lattice in EE . One has (see

[Eic-1952, Satz 12.11)

Proposition 11.4, L = [al,...,an] is the intersection

L=k"nL n L n ... of and of all local lattices L ,and L _ = ot

PR £ £ 2

for almost all prime ideals j4 (the exceptions being the prime ideals dividing

the denominators of the components of a LN and those prime ideals dividing

100

at the same time all the numerators of the v-th components a of the

lv,...,anv

basis Ayse sy of L ; the components taken with respect to the natural basis

b

n °n
1""’bn of k or of EE)
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Conversely, if the LE are (local) lattices in kE so that LB =gn for

almost all prime ideals p then L = k*nL nlL._ a.. isa unique (global)

. PO < S 7
lattice in k" with the property g’EL = Lp .

~

Definition 11,5, Two lattices L and K in (k",f) belong to the same

genus, in symbols L~ K, if L’Bz KE for all p , i.e. if there exists for

each prime ideal p a (local) orthogonal transformation SE € OfR = {automorphisms
of (in £) | £(S,v) = £f(v) for all vein} such that L = S.K .
® ) R g RE
We note that L~ K, i.e. i: =S i for all and E = c;n and
’ 2" ER . 2 %

~ -~ ~

n . .
= for almost all implies that S_ e GL(n,0c ) for almost all .
2 ke 4 % %

If we generalize the definition 6.1 to algebraic number fields as follows

Deginition 11,6, Two quadratic forms fL and fK over g are in the same

genus, we write fL ~ fl( , if fL and f, are equivalent over all local integers

K
gR , which means that MK = TtMLT for an integrally invertible matrix T _ with

B*E

integer p-adic coefficients (in E‘E) for all prime ideals p , then we get the

following characterization of a genus.

Proposition 11.7. L~ K if and only if fL ~ fK .

In particular L~ gn if and only if fL ~ f .

-~

The proof that LR ~ K_ if and only if ff. o~ f’f( over QR for a prime

k LR
ideal p is similar to the proof of proposition 11.3.
1.12 Chevalley [Ch-1936] introduced the (multiplicative) {d2fes in connection
with the multiplicative class field theory [Ch-1940] and Artin-Whaples [A-W-1945]
introduced the additive addfes (or valuation vectors as they called them). The

adéles A = A, over Q can be defined in the following way.

Q

Let Q(p) stand for the p-adic numbers and Z(p) for the p-adic integers,

then a(p) =Q + 2(p) We put 6(«:) = Z(w) =R the real numbers.
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Q, . for all
prod lape Qe fora

for almost all p} are called the

Definition 12.1. A = AQ = {(am,az,as,as,...,a
places p = «,2,3,5,... and ap € Z(p)
adéles of Q .

Addition and multiplication in A is defined component-wise.

[+ o] o

Deginition 12,2, A" = A =R x Z x Z x Z X ..%X Z X ... A .

Q can be imbedded into A in the following way. We view a € Q as a
p-adic number in Q(p) for all primes p and as a real number in Q(w) =R .
Then p(a) = (a,a,a,...,a,...) is an ad&le called a principal addfe. We identify

Q with the field of principal ad&les p(Q) < A .

Q = p(Q 1is discrete in A and A 1is locally compact (with respect to the
product topology, where the p-adic topology is taken in Q(p)) . Furthermore
A= (RXZ  XZ _.XZ X...XE x...) + Q= ([0,1 XE XE X...XE X,..) ®
X2 2% (3) % (s) () e+ Q= (01252 ) @
where @ denotes the direct sum and [0,1) = {x¢ R] 0<x<1}
A/Q ~[0,1) x Z X Z x Z X ... % Z x ... = F 1is called the fundamental

(2) (3) (5)
domain of A .

The idéles IQ = 1 are the units in A . They can also be defined as
follows.

Deginition 12.3. 1 = {(qw,az,as,as,...,a

~

p,...) ape Q(p) for all places
P =%2,3,5,... and ap € U(p) = Z(p) - pZ(p) = units in Q(p) , for almost

all pl.

1.13 Weil [Wei-1961] generalized the notion of addles to arbitrary linear alge-
braic groups over Q , i.e. to Zariski closed subgroups of GL(n,Q) . These are

groups of rational n X n matrices satisfying certain algebraic (or polynomial)

relations R . If G = GQ is a linear algebraic group over Q with relations
R , then G , G5 and G are the corresponding matrix groups with the
~ Q Z U

(P () (p)

same relations R but with matrices of p-adic numbers, p-adic integers and
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p-adic units (whose inverses are also matrices with p-adic integers).

Ga = GR is the corresponding matrix group with real matrices.
(=)
Deginition 13.1. GA = {(Tw’TZ’TS’TS""’Tp"'°) |Tps Ga for all places
(p)
p=°2,3... and Tp € G for almost all pl} is called the ad2fe group of G .

(p)
If G is the additive group Q then G, = A, and if G 1is the multiplica-

tive group Q* then GA =1

Addition and multiplication in GA are again defined component-wise.
o(T) = (T,T,T,...,T,...) with T e G is a principal addfe and G and
p(G) E‘GA can be identified as before. Again p(G) 1is discrete in GA and GA

is locally compact (with respect to the product topology).

Definition 13.2. Gw=qRXG“ x G5 X ... X% G X ... cG
A Z
Z(Z) (3) (p)

1.14 Ono [0On-1957] defined the id&le group (and the G-genus of lattices with
respect to G) for an arbitrary algebraic group G (over an algebraic number
field k) and Kneser [Kn-1961] applied the adé&le group of the orthogonal group

0f of a (non-degenerate) quadratic form f over Qn to obtain and extend results
by Siegel [Si-1935] on the number of representations of a e Q by f over Z in
terms of the number of representations of a e Q by f over E(p) (more gener-
ally Kneser considers an algebraic number field k instead of Q and an

g-module of rank n over the integers g of k instead of ).

Kneser [Kn-1961] and Borel [Bo-1963] show for the proper and ordinary ortho-
gonal group G = 0; s Of of a non-degenerate quadratic form f over Q

(compare also Takahashi [Tak-1957, theorem 51]):

Theorem 14,1. The double cosets G: « T » GQ (Te GA) are in one-to-one

correspondence with the proper equivalence classes or with the equivalence classes

in the genus of f .
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Proof. Let T = (Tm’TZ’T3’°"’Tp"") € GA . This means that Tp € Ga(p)

® Yo

define an action of T on lattices (applied only to the standard lattice Zn)

for all places p = «,2,3,... and Tp € GE = G for almost all p . We

in Qn in the following manner. Put Tp(E?p)) = L(p) which is a local lattice
“n - °n - n o,

i . Then L = Z £ 1 t all , hence L=0N1L n is a

m Q) (p) * Fpy For almostall p e " ¢

uniquely determined lattice in Q" (proposition 11.4). We now put L = Tz

By the definition 11.5 L 1lies in the same genus as z" . The stabilizer of 2"
in GA is:
n n_.,n
stabGA Z° = {TeG,y | T2 =27}
~n on
= {(T_,T5,Tz5.us, T ,...) | T 2 =2 f 11
(T, T2 Ty proe ) [ Tp2(py = Zgpy for all pl
o0
= {(Tw,TZ,T:,,,...,Tp,...) |Tpe Gz(p) for all p} = Gy

Hence the cosets G: T with Te¢ GA are in one-to-one correspondence with the

lattices L in the genus of z" , and by the definition 11.1 are the double
cosets G: « T » GQ in one-to-one correspondence with the proper or ordinary

equivalence classes in the genus of z" and hence also with the proper or ordinary

equivalence classes of the genus of f by virtue of the proposition 11.3 and 11.7.

2. THE GENUS OF A NILPOTENT GROUP

2.1 Various generalizations of the notion of a genus as defined in 1.11.5 have
been introduced by various authors. We only mention Ono [On-1957], where the local
orthogonal group OfR is replaced by the local algebraic group Gf of any alge-
braic group G over a number field k , Takahashi [Tah-19591], where the genus is
defined for TI-lattices, where T denotes the group ring g[G] of a finite group
G over the integers g of an algebraic number field k , and Jacobinski [Ja-1968]
where the genus is defined for so called R-lattices. These are finitely generated
(unital) R-modules which are torsion free as g-modules, where R is a subring

of a semi-simple finite dimensional algebra A over the quotient field k of a
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Dedekind ring ¢ with the property that kR = A and 1 e R and that R is
finitely generated as an g-module (see also [Sw-1970], p. 106). These definitions
paved the way for the notion of a genus of a nilpotent group introduced by Mislin

and Pickel.

2.2 We recall that a group G is called nifpofent if its lower central series

Y16 =6, Y,6= {G,G] = group {[x,yl= x_ly_lxyl X,y€ G}, .. ,Y;,46 = [G,YiG]= group
{lx,yl= x_ly‘lxy| xeG,ye YiG},... is finite, i.e. y G =1 for some ne N .

A nilpotent group G (the operation in G will be multiplication) admits a unique
(up to isomorphism) group Gp for every prime number p , called the p-£ocaliza-

tion of G ([Ma-1949] and [Laz-19541) satisfying the following properties.

(1) Every x ¢ GP has a unique n-th root in GP for all integers n

prime to p ,

(ii) there is a homomorphism e : G > Gp so that for any other homomorphism
f: G+ XK, where K has the property (i) that all its elements admit unique
n-th roots in K for n prime to p , there exists a unique homomorphism

h: Gp +> K with f=hoe.

G0 is the corresponding group having unique n-th roots in G0 for all

integers n . G, is called the rationalization of G or else the Malcev-

0
completion of G [Ma-1949,2]1. It is again unique up to isomorphism. If G is

torsion free then G0 is the smallest divisible group containing G . For more

details see [Hi1-1975] or [H-M-R-19751].

We also introduce the p-completion G(p) of G for a prime number p

[Su-1970]. This is the set of infinite sequences {ai} with elements in G for

i i i
which a;1a1+1 e G = gp{xP |xeG}, where G° is the group generated by the
pl—th power of elements in G . Two sequences {ai} and {bi} are identified

i -
if ailbi e GP  for all i > 0 . The multiplication in G(P) is defined

coordinate-wise. If G is a finitely generated nilpotent group then also G

(P)
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-~

is finitely generated nilpotent and if G is torsion free then so is G(p)

(Pi-19711].

2.3 In connection with the study and classification of H-spaces Mislin defined

the genus GM(N) of a nilpotent group N as follows ([Mis-1971] and [Mis-19741).

Definition 3.1, The MisLin-genus GM(N) of the finitely generated nilpotent
group N is the set of all isomorphism classes of finitely generated nilpotent

groups K with Kp isomorphic to Np (in symbols ](p o Np) for all primes p .
If Ke GM(N) , we also write K~ N .
M

Pickel was concerned with the isomorphism problem for finitely generated
nilpotent groups. He showed that if F(G) denotes the set of isomorphism classes
of finite quotients of the group G and if G and H are finitely generated

nilpotent groups, then F(G) = F(H) if and only if G(p) ~ H for all primes

(p)
p [Pi-1971, lemma 1.2](1) . This result gave rise to the following definition

(given independently of Mislin's definition 3.1).

Deginition 3.2. The Pickel-genus Gp(N) of the finitely generated nilpotent
group N 1is the set of all isomorphism classes of finitely generated nilpotent

~

) o N(p) for all primes p and K, K =~ Ny -

groups K with K 0

Pickel showed that GP(N) is finite [Pi-1971, Section 3] a result that holds
all the way through, starting with Gauss (see [On-1957], [Tah-19591, [Eic-1952],
[Bo-1963]}, [Sw-1970, p. 123]). The same holds for the complete genus GC(N)

[Pi-1971, theorem 3.6], defined as follows:

Defdinition 3.3. The complete genus G.(N) of the finitely generated nilpo-
tent group N is the set of all isomorphism classes of finitely generated nilpo-

tent groups K with K(p) ~ N for all primes p .

(»)

We shall write K~ N if K e GP(N) and K~ N if Ke GC(N)
P C

(1) See atso [Wan-1975, Lemma 21 fon a shortor proof.
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2.4 One has Gc(N) > GP(N) 3_GM(N) [War-1975, lemma 3] and in general GP(N)
contains GM(N) properly [B-W-1975, Cor. 4.2]. This follows from a theorem of
Pickel [Pi-1970] who associates with a form f (homogeneous of degree d and in
n variables) over R = Z,Q,Zp = {%— a,beZ, pl b} or 2(p) = the p-adic integers
a nilpotent group N(f) so that two forms f and g are R-equivalent up to a
unit in R, i.e. £(A(X)) = u -+ g(x) with x = (X[,...,X ) € R" , A e GL(n,R)
and u € R* = the units of R, if and only if N(f) is R-isomorphic to N(g)

If one now takes the example of Waterhouse (see [B-W-1975, lemma 2.2]) of the two

forms of degree 3 in two variables f = f(x,y) = 73y2((x1-%-y)3-2y3) and

g = glx,y) = 73y2((x1-% y)s-2y3) then f and g are equivalent over Zp and
thus over Z(p) for all primes p # 7 . Furthermore f and g are equivalent
over Q and also over 2(7) but not over Z7 modulo the units of Z7 . Hence

N(f) and N(g) are in the same Pickel-genus but not in the same Mislin-genus.

On the other hand Warfield [War-1975, theorem 2 or theorem 4] and Lemaire
([Lem-1975-1] and [Lem-1975-2]) showed independently that GP(N) = GM(N) in the
case where N is a finitely generated nilpotent group with finite commutator

subgroup.

We remark that the set [X;Y] of homotopy classes of continuous maps
f: X>Y (relative to a base point), where X is a finite complex and Y a
finite homotopy associative H-complex, forms a finitely generated nilpotent

group with finite commutator subgroup.

2.5 Under the same assumption where N is a finitely generated nilpotent group
with finite commutator subgroup Mislin and Hilton ([Mis-1974] and [H-M-19751]) were
able to introduce a group structure in the genus set GM(N) = GP(N) which finds
its counterparts in the composition of quadratic forms introduced by Gauss
[Ga-1801, art. 235] and in the multiplication of ideals in quadratic number fields

(see 3.2).

To that end we introduce the center ZIN of N , the torsion subgroup TIN

of ZIN and the free center FIN of N given by




32 On Zhe Development of the Genus of Quadratic Forms

FIN = {xe ZN | x=y" for some yeZIN with

n=exp TZN = exponent of TZN} = (ZN)"

Then FIN 1is a free abelian characteristic subgroup of N of rank h = h(N) ,

where h equals the dimension of the rationalization of N, over Q , and the

0
quotient group QN = N/FZIN is finite. We denote by t(N) the exponent of the
abelianization of QN , i.e. t = t(N) 1is the smallest number such that xt =1
for all x ¢ (QN)ab = (QN})/(QN)' , where (QN)' is the commutator subgroup of QN .
IN , FIN , QN , h(N) and t(N) are all invariants of the genus

G(N) = GM(N) = GP(N) (see [Mis-19747).

There is a surjective map & = 8(N) : (Z/t2)/*{21} » G(N) of the multiplica-
tive group of congruence classes modulo t which are prime to t , factored by
the classes *1 modulo t to the genus of N [Mis-19741, If 3 e (Z/tZ)*/{t1}
has a representative a ¢ Z and if 8a = M » then there is a map ¢ of central

extensions of Zh by QN :

z}i‘, d N QN
¢a}ll ] | o lqb'

Z'y————> M —>> QN

where |a] = |det ¢a| = |coker ¢a[ = [FIM : $(FZN) 1 , f(Zh) = FIN ; g(Zh) = FIM .

Furthermore ¢ is injective and surjective modulo elements of order prime to t .

If on the other hand a map ¢ of central extensions of Zh by QN is given

so that ¢' is an automorphism of QN and that ¢ is injective and surjective
modulo elements of order prime to t and F(Zh) = FZN then

|coker ¢a| = |det ¢a] = |a] is prime to t and M e G(N) and g(Zh) = FZIM . We
then put 8a = M where a is the congruence class of the order [coker ¢a| of
coker ¢a modulo t . The (additive) abelian group structure in G(N) 1is now
defined to be the unique group structure that extends the surjective map 6 to a
surjective homomorphism of additive abelian groups. We see that N plays the

rdle of a zero-element in G(N)
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This construction yields at the same time an upper bound for the cardinality
of the genus G(N) (see [H-M-1974] and [Lem-1975-2] for an improvement) and
allows one to determine the group structure of G(N) in some special cases. Hilton
and Mislin also give a more intrinsic description of the group G(N) by means of

pullbacks and pushouts.

3. THE GENUS IN ALGEBRAIC NUMBER FIELDS

In Chapter 1 we followed the stream leading to the concept of a genus for
nilpotent groups. Here we would like to mention some other ramifications of

Gauss' original genus bringing us to algebraic number fields.

3.1 It was Dedekind [De-1871] who introduced the concept of an ideal in an alge-
braic number field thereby replacing the ideal numbers that were created by Kummer
in order to restall the fundamental theorem of arithmetics (uniqueness of factori-
zation) in algebraic number fields. Dedeking also has given a translation of
Gauss' theory of (binary) quadratic forms into the language of ideals [De-1894,

Art. 182, 186, 187] which runs as follows.

We consider the quadratic number field k = Q(vd) over Q , where d is the

diseriminant of the field k meaning that d =1 (mod 4) and square free or

d =4d' with d*' =2 or 3 (mod 4) and d' square free,

k= QWd) = {r+sV/d|r,seQ} appears as a vector space of dimension 2 over Q and

d+2\/3 | a,be 2} in k form a free Z-module of rank 2 with

the integers g={a+b

d+vd
] €

Z-module of rank 2 and can be described as g = {xul +ya, | x,y €2} with respect

the basis 1,6 =

g . Every (non zero) ideal g in k is again a free

to a certain pair of elements 0,0, € & . We call 0,0, a basis for g and
write a= [ocl,otzl . An ideal g in k is said to be integral if acg,
otherwise @ is called fractional. If g is a fractional ideal then there

exists a non-zero integer B € 0 such that B cg.

We let Ik stand for the multiplicative group of (fractional) ideals g in

k and Pk for the subgroup of principal ideals (0) = ag generated by a single




34 On the Development of the Genus of Quadratic Fonms

element o € k . Then the quotient Cy = kaPk is called the {ideaf class groupr
of k . Two ideals g and &' Dbelonging to the same class in Ck are called
equivalent, in symbols g o~ @' ; in other words g ~ g' iff there exists @ e k
such that g = (a)g' . We say that two ideals g and g' are properly equivalent,

in symbols g = g' , if there exists a = a + bVd € k with positive norm
N(@) = oo = a2 - b2d > 0 (see below) and g = (¢)ga' . That the group Ck as well
as the narrower group of proper equivalence classes Cg are finite follows from

the finiteness theorem for (proper) equivalence classes of binary quadratic forms

(see 1.2 and below).

3.2 We now take an integral ideal ga = [a

a 1’“2] c g with a certain basis

0,0, € &« We denote by N(a) = [g:g] the (finite) index of g in g also
called the noam of @ . If o =71 + sVd is an element in k then & = r - sVd

is its conjugate. The norm N(a) = aq = r2 - de and the trace T(@) = a + o = 2r

of o are rational numbers. We shall need the fact that

0705-050)
N(g) = l""'iﬁf"" (see [Hec-1923, Satz 76, and p. 115]). After ordering the
basis elements a0, of a so that al&E - azai = N(@)Vd 1is positive or positive

imaginary we associate with the (ordered) ideal & = [a.,a,] the binary quadratic
% 1°%2 !

form
e - (a1x+azy)(a1x+a2y)
a N(a)
%191 2 %%ty 0%y 2

N@) x° + N @ Xy + ) y

ax2 + bxy + cy2

From now on it will be more convenient to replace 2b in Gauss' notation by b
and to introduce the discriminant d of ax2 + bxy + cy2 as being d = b2 - 4ac
which equals four times the determinant in Gauss' sense. We let henceforth

f = (a,b,c) stand for the form ax2 + bxy + cy2 and we shall call (a,b,c)

integral if a,b,c are integral and primitive if the g.c.d. of a,b and c is one.
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The coefficients a,b,c in fa are integral rational numbers, for the

~

first factor (xu1+ yo represents a number o € g for all x,y € Z , running

)
through all the elements of g if x and y run independently through all of

Z , and the second factor (xal+y52) represents the conjugate a of a . Hence
the product (xa1+yu2) (xal’ry-&z) represents all norms N(a) = oo of elements
ae€g if x and y vary in Z ., N(g_) always divides N(a) for all a € a,
in fact |N(®)|/N(@) 1is the index [g:(®)] of (o) in g . £,(x,y) is
therefore a rational integer for all (x,y) € 22 , in particularN a = fa(l,O)

and ¢ = fa(O,l) and hence b = fa(l,lj - a -c are integers. The di:criminant
d(fg) is :qual to the discriminan: of the field k = Q(Vd) ,

- =2 - - - =2
(alazﬂxzal) -40L1 1%2% ) (alotz-cxzal)

N N’

d(fg)=b2-4ac= =d .

Furthermore the form fa must be primitive, for if p divides a,b, and ¢

~

then p2 must divide d which is possible only for p = 2 (d being a field

discriminant) in which case d = 4d' and d4' = 2,3 (mod 4) . But then the

f
integral quadratic form '22‘ = (%‘-, b %) = (a',b',c') has discriminant

2 »
d' = b'2 - 4a'c' which must be = 0,1 (mod 4) contradicting the nature of d'
The primitivity of fa. implies that N(g) is the g.c.d. of 00 = N(al) ,

~

= T(alaz) and oy, = N(otz)

Gldz + Otzd.l

If d < 0 then fa is a positive quadratic form, i.e. fa(Zz) 2 0 , because
of

- 2 2
. oay ) N(al) ) T - Sld

“N@ © W@  N@

(vhere a; =1 + sl\/'cT) . If d>0 then f isaso called .indefinite quadra-

~

tic form, i.e. a form taking positive and negative values.

We finally notice that a change of basis of & yields a form le properly

equivalent to fa (see also [Hib-1897, §301).

~
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Our construction can be summarized by the first part of the following:

Proposition 2.1. To every (ordered integral) ideal a-= [al,az] in the
field k = Q(Vd) with discriminant d there corresponds a primitive integral
binary quadratic form fa of discriminant d which is positive if d < 0 and
indefinite if d > 0 . "

Conversely, given d there corresponds to every primitive integral binary
quadratic form f = (a,b,c) of discriminant d = b2 - 4ac , positive if d < 0
and indefinite if d > 0 , an integral ideal a = [al,azj in the field Q(Vd) so

that f = £ (for a proper choice of 0,0

2 2) -

2
_ b-Vd
d>0 and 2a>0. Inthecase d >0 and a > 0 one puts a = Vd|a, - -

For the proof of the second part one puts a-= [é, b-VH] if d <0, or if
In both cases Vd is taken positive or positive imaginary (see [Hec-1923, p. 2131).
We have now the following important relation (see [Hec-1923, Satz 154] or
[De-1894, §1871]).

Proposition 2.2. g = a' <=> £5 £

Hence there is a one-to-one correspondence between the multiplicative group
Cg of proper ideal classes in k = Q(Vd) and the set of proper primitive equi-
valénce classes of positive quadratic forms (if d < 0) or indefinite quadratic
forms (if d > 0) of discriminant d . This yields on the one hand that the
proper ideal class group Cg (as well as the ordinary class group Ck) is
finite (see 1.2) and on the other hand that the set of proper primitive equiva-
lence classes of quadratic forms with given discriminant d (positive if d < 0 ,
indefinite if d > 0) can be equipped with a group structure, the group opera-

tion being nothing else than Gauss' composition of classes [Ga-1801, Art. 2491].

The same correspondence permits to distribute the proper ideal classes of k
into genera. Take an ideal class fal with a representative & that can be
taken integral. Associate to & the primitive form fa . We know (see 1.2)

~2

that all forms of the proper class [f%] represent the same set fG(ZZ) of
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integers and belong to the same characters, i.e. (-ﬂ-) has a fixed value for all
i

me fa(Zz) prime to p; » where P; is an odd prime divisor of the discriminant
d (;;e 1.2) . By the correspondence gh fa we see that fa(Zz) is also the

set of norms of elements a ¢ ¢ divided by :he norm of g, Nfa(Zz) = {%| aeg,} .
Recall that N(a)/NQg) is always an integer for any o e a . ;y this and theorem

1.2.3 we infer (see also [Hec-1923, Satz 139])

Theornem 2.3. Let g be any (integral) ideal in the proper ideal class [al
of the quadratic number field Q(Vd) with discriminant d and p a prime
dividing d . Then the norm N(a)/N(g) e fa(Zz) with non-zero a ¢ & and not
divisible by p are all either quadratic r:sidues or non residues modulo p .

It is clear that the construction ar fa works as well for fractional ideals,

~

the resulting fa still being an integral primitive quadratic form. Clearly

~

proposition 2.2 and theorem 2.3 then still hold in this larger context.

3.3 Hilbert [Hib-1897, §64] (see also [Hib-1894, 2 p. 28]) introduced the noam
nesdidue symbol (il’)—d-) for an arbitrary integer a , a non-square integer d and

any prime p , and he defined

Deginition 3.1. (31‘3—‘1-) =+1, if a = N(a) (mod pe) for an algebraic

integer o € g 1in the quadratic field Q( d) for all powers pe ;

(E{)i) = -1 , otherwise.

The symbol has among other the following properties [Hib-1897, §641].

Proposition 3.2.

(i) (%):1,3 p 1 ad

(ii) (%):(;‘—)),if pld, pfa and p=2



38 On the Development of the Genus of Quadratic Fomms

a-1
(iii) (32&1) = (-1 2, if %s 3,7 (mod 8)
a2-1
(2:22) e ® L if $22 (mod 8)
a-1 az-l

(%) S22 g %s 6 (mod 8)

o (5 ) ©

Comparing proposition 3.2 (ii) and (iii) with Section 1.2 we see that Hilbert's

norm residue symbol coincides with Gauss' characters or else with Dirichlet's

4
determinant of f if d is the discriminant of £ . For the field k = Q(Vd)

characters ep(f) in the case where those are defined. Recall that d is Gauss'

we get t non-trivial characters (—;9) , where t is the number of prime divi-
sors of the discriminant d of k . Note that in the case 4 | d we have only

one character corresponding to the prime p = 2 .

We now want to define the genus of an ideal 4 in Q(Vd) so that 4 and
&' are in the same genus iff fa and f& lie in the same (Gauss-) genus.

~

Definition 1.2.5 therefore suggests the following

Definition 3.3. Two ideals & and g' or two proper ideal classes [al
and [g'] in the field Q(Vd) with discriminant d belong to the same genus,
in symbols g~ 4' , if ep(fa) = ep(f&) for all odd primes p dividing d and

for p=2 if d %1 (mod 4).

Note that the condition for p =« (if d < 0) is also satisfied.

(1) By vintue of (4v) the symbol ( ) can be extended to rationals a , and one

m

has Proposition 3.2 (v) : (ipLd—) =1 4iff a=N(@) I(modp®) for an o « Q)
for all prime powers p® . The symbol is in fact symmetric in a and d ,
40 that it can be defined for any non-zero rational d , but we shall not need

this propenty (see [Ha-19693]).
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N(a) 4
We may write Ep(fg,) = (M&pL__) for all non-zero o € & with %EV%— prime
to p (these o exist because of the primitivity of fa) . Then ep(fa) is

defined for all prime numbers, viz. ep(fa) =1 for all primes p not dividing
d by virtue of proposition 3.2 (i) . We could therefore give the following

symmetric form to the foregoing definition.

Defdinition 3.4, a~ a' iff ep(fa) = ep(fclz) for all primes p where

N(a) d
£y = (M@
P 4 P

- . N!a! .
for all non-zero o e 4 Wwith N (@) prime to p .

There are at most 2t

different genera, where t is the number of different
prime divisors (2 included, if 4 | d) of the discriminant d . It is clear
that the unit ideal (1) =g of all integers in Q(vd) 1lies in the proper

principal (ideal) class and hence in the principal genus (by proposition 2.2)

which is characterized by ep( ) = +1 for all primes p|d and hence for all p .

The important relations between genera and the norm residue symbol are put

together in the following

Theonem 3.5. Let a and a' be ideals in the field Q(Vd) with discrimi-
nant d . Then

N(e) , d

(i) ( - ) = 1 for all non-zero a ¢ Q(Vd)

(ii) g 1is in the principal genus iff (—N—(ﬁp’u) =1 for all primes p .

(iii) ¢~ a' iff <NQII)) 2 d) = (N(g.'g s d) for all primes p .

(iv) & is in the principal genus iff there exists a e Q(vd) such that

N(@) = N(o)

(v} @& prime to d is in the principal genus iff there exists a ¢ Q(\/::l_)

prime to d such that N(@) = N(a) (mod d) and N(a) > 0 .
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(vi) g~ 4a' iff there exists a e Q(Vd) prime to d such that

N(a) = N(a)N(a') (mod d) where &4 and a' are prime to d .
Proof.

(i) Follows immediately from definition 3.1 first for integers o and then

)

for any o = 0
N(a )
N(g)

(ii) Take an integer ap € 4 so that is prime to p . Then
N(a

(N ap d N(@) ’

(N(a ), d’

=1, @& is in the principal genus iff
N(a )

1 for all p .

e (f ) = ::Eiz;——) for all p (and certain ap) which is equivalent to

say that (HLQL;Ji

(iii) Is a consequence of (ii), and (vi)} follows from (v) . To prove (iv)
and (v} we shall apply Hilbert's noum theornem ([Hib-1837, Satz 102] and
[Ha-1969, §26.71) ,

n,d

P
P, then n is the norm n = N(a) for a non-zero a ¢ QVd) ;

Theorem 3.6. If for a non-zero n and d < ) = 1 holds for all primes

and the reciprocity £aw to which Hilbert has given the form ([Hib-1897,

Hilfssatz 14] and [Ha-1969, §5.61),

Theotem 3.7. For any non-zero n and d , not both negative, the product

over all primes 1I (ELQ) =1.
P P

(iv) Now follows from (ii) and theorem 3.6 and from (i), and (v) can be got

from theorem 3.7 as follows. If N(a) = N(o) (mod d) then N(g) = N(a) (mod p)

2 2 2

for all primes p dividing d which means that N(g) = x° - dy” = x° (mod p)

) By means of the multiplicativity of the norm and Hilbert's nonm symbol
(proposition 3.2 [4v)).
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is solvable for an integer x mod p . It is well known that then

2

N(a) = x (mod pe) is solvable for all powers pe of p [Se-1973, II-2,

Corollary 2] if p = 2 , hence (Nie%fii) =1 for all p = 2 . By theorem 3.7

and proposition 3.2 (i) also Ng),d =1, so that N@ .,d =1 for all
P 2 P

primes p . The necessity is clear from (iv).

We now state Gausd' fundamental theorem for genera of quadratic number fields
k = Q@/d) with discriminant d , proven by Gauss for quadratic forms
[Ga-1801, Art. 247, 261/2, 286/7] , which can be interpreted today as being the

main theorem of class field theory for quadratic number fields.

Theorem 3.8.

(i) There are precisely Zt_l different genera, where t is the number

of prime divisors of d .

(ii) The square of any proper ideal class lies in the principal genus, and

conversely

(iii) every proper ideal class in the principal genus is the square of a

proper ideal class.

Proof. (ii) follows immediately from the multiplicativity of the norm and of

2 2
Hilbert's norm residue symbol: (HLQ—%J—Q) = (§£8Q51J1> = +1 for all primes p .

That among the possible 2t genera there exist at most Zt_l follows from the
reciprocity law (theorem 3.7). That there really exist Zt_l genera is a deep
lying fact that Gauss was able to deduce via (iii) from the representation theory

of binary quadratic forms by ternary quadratic forms.

3.4 The generalization of the theory of genera for quadratic algebraic number
fields to cyclic algebraic extension fields of prime degree played an important
1rd8le in erecting the edifice of classical class field theory by Hilbert, Takagi

and Hasse.
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Suppose that k is an algebraic number field and that K is a cyclic alge-
braic extension of %k , in symbols K | k , whose degree is a prime number £ .
Then the relative discriminant d of K|k is given by d-= 'ﬁ‘z-l , where §
is called the conductor of K|k and where 4 and { are integral ideals in k

(see [Hib-1897, Satz. 79] or [Wey-1940, Chap. III, 121}.

First we introduce the ray modulo § in k [Web-18971]

t Rk,’ﬁ b
or [Ha-1926, I, §3] as the multiplicative group of principal ideals (a) = gg

in k generated by an element o ¢ k satisfying

8

(1) @ =1 mod § , meaning that o = \-,— where B and Yy ¢ g are integer

numbers in k prime to 4§ and congruent modulo f ,

(ii) o >> 0, i.e. o is totally positive, which means that all real conju-

gates of a are positive.

Rk,,ﬁ' ={(@) |aek, a1 mod ’é, a>>0} is a subgroup of the group of
principal ideals Pk’i in k prime to ’ﬁ’ which is itself a subgroup of the
multiplicative group Ik’ﬁ, of ideals in k prime to Ji . Sk = Ik’ﬁ,l Rk,ﬁ s
called the ray class group of k , is finite [Ha-1967, p. 72]. We denote by
Hk’,ﬁ, the group of ray classes in k containing relative norms from K to k of
ideals i € IK,’Q lying in K and prime to é‘ and by Qk,ﬁ the group of ray

K4

lying in K and prime to { . Qk ,6, is contained in Hk ,ﬁ, and the norm mapping
~ N 2

classes in k containing relative norms of principal ideals (A) = AQ e P

N from K to k induces a surjective (multiplicative) homomorphism
N, : IK’,ﬁ,] PK,’é > Hk’,é, | Qk,’é whose kernel Ee = ker N, is called the principal
genus in K . It consists of ideal classes [’é'],ﬁ, in K prime to f whose norm

lie in Qk,_é , 1.e.

Eg = {[gjﬁlégx » NA = (N(A))  (mod §) for an AeK with N(A)>> 0} . M

(1) We see that E, coincides with the principal genus in quadratic number fields,
when k =Q, K=QVd , 4§ =d [(see theorem 3.5 (v}).
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IKnél Ey is the genexa group in K . Its order g = [I, :E.] = [Hkﬁé:Qk,ﬁj

is finite.

Let furthermore T stand for a generator of the cyclic Galois group of prime

order £ of K over k , and let Al'T symbolize the quotient A% (see
~ A

~

[Hib-1897, §541) called the symbolic (1-1)-power of A
Then Takagi proved [Tak-1920, SHtze 16, 17, 19, 20, 22]
Theorem 4.1.

(1) The symbolic (1-1)-power of any proper ideal class [5] € CK lies

in the principal genus Ep .

(ii) Every proper ideal class Lé]ﬁ e Ep is the symbolic (1-t)-power of
a proper ideal class prime to 4§ in Cév.
.. . 0L £ 4]
(iii) The number g of genera is given by g = 2 7

Hereby A and B are placed in the same pioper ideal class in K if
A= B(A) with N(A) >> 0 . It is clear that theorem 4.1 generalizes Gauss'
theorem 3.8 to cyclic extensions, if we remark that in the quadratic case

12 =1, hence T=-1 and 1 -1T=2.

[Ik :Qk ]

= [Ik”ﬁ:Hk,'é]

We also note that g = [Hkné:Qkaﬁ] implies that

[1 :H, ,]1 =4 , a fact that will be used in the next definition 4.2.
k.4 kof

Takagi applied this theorem 4.1 on the way to establish the existence

theorem of class field theory, whereby he defined

Deginition 4.2. A relative normal field K over k of relative degree n

is said to be class field to a group of ray classes H modulo an integral

kzﬁ
ideal ’é in k , if
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(1) Hk,é is the group of ray classes in k containing relative norms from
b

K to k of ideals A € IK 4 lying in K and which are prime to 4 -
3

(ii) [Ikaé:Hkné] =n .,

The main theorems of class field theory for a given number field k then

comprise (see [Tak-1920] and [Ha-19261)
Theorem 4.3,

(i) To every group of ray classes Hk § modulo an integral ideal ’é in k

there exists a unique class field K over k .
(ii) K 1is abelian over k .
(iii) Iknﬁ/Hknﬁ is isomorphic to the Galois group of K over k .

(iv) Every abelian field K over k is class field to a group of ray

classes Hk"é modulo an integral ideal 4 in k.

Class field theory therefore establishes a one to one correspondence between

abelian extensions of k and certain congruence groups in k .

3.5 Going in the opposite direction Hasse gave an elegant treatment of the
theory of genera in the quadratic number field k = Q(Vd) over Q with discri-

minant d by means of class field theory [Ha-19517.

Let K be the class field over k belonging to the group of principal
ideals (o) generated by o ¢ k whose norms in Q are positive N(a) > 0 .
K is then the so called absolute or Hifbert class §ield in the narrower (or prop-
er) sense. This means that K is abelian over %k and unramified over k , i.e.
its relative discriminant ,g from K to k is one and the conductor 'é is one
also. Moreover K is the maximal unramified abelian extension over k . Hasse

now defines [Ha-1951]
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Deginition 5.1. The maximal unramified abelian extension K, over k which

is also abelian over Q is called the genus field of X .

Kg is a subfield of K and it turns out that the group of ray classes
Hk’i Qﬁ: 1) corresponding to it (i.e. to which KG is class field over k)
is the principal genus Ek in the classical sense, say in the sense of theorem 3.5.
Theorem 4.3 (iii) infers that Ik%él Ek is isomorphic to the Galois group of
K. over k . Furthermore Hasse regains the fundamental theorem 3.8, viz. the

G
. . _ oLt-1
number of genera is g = [Ik,é'Ek] = 2

being also the degree [KG:k] of Ko
over k . More explicitely Hasse determines the genus field KG as being the
composition of independent quadratic fields Q(Vﬁ?) whose discriminants p; are

related to the primes P; dividing d in the following way

Theonem 5.2. Kg = Q(Vﬁf)(Vﬁg)...CVﬁf) , where d = pIpE...pz is the unique
decomposition of the discriminant d into so called prime discriminants of the

form

p-i
p* = (-1) 2 for p=z2

p* = -4,%8 for p =2
if pla.
KG is of degree 2t over Q and of degree Zt-1 over k = Q)

3.6 Based on Hasse's quadratic theory of genera Leopoldt [Leo-1953] developed

the more general genus theory for abelian number fields.

Let k be an abelian number field over Q and K, its genus field as
defined in definition 5.1. The paincipal genus Ek is again defined to be the
1)

group of ray classes corresponding to KG as class field over k , and Ik !Ek

is called the genus group of k . With the help of the description of the

(1) Recart that § =1 .

~
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arithmetic in abelian number fields by means of characters and Gauss sums
[Leo-19627 Leopoldt gave an explicite description of KG and he obtained the

following fundamental theorem.
Theorem 6.1,

(1) The principal genus Ek in k 1is generated by all symbolic
(1-t)-powers of proper (i.e. narrower) ideal classes [al e C; where T runs
through all automorphisms in the Galois group of k over Q .

Ile
P
(ii) g = [Ik:Ek] = FFTaj- the product taken over all prime numbers and

where ep is the ramification order of a prime ideal p dividing pg in k.

To define the ramification order ep of the prime number p in k we

consider the factorization of the prime ideal (p) = pZ in Q into prime

e e
ideals B]""’f@ in k pg = Ell"’fgs It is easy to see that in a Galois
(i.e. normal) extension &) T ... = & (see [Hec-1923, §291, as all the primes

Bys---spg must be conjugate. We call this number the ramification order of P

in k and denote it by ep

A theorem of Dedekind ([Hib-1897, Satz 31] and [De-1882]) states that e, =z 1

if and only if p divides the discriminant d of k over Q.
Furthermore seP is always a divisor of the field degree [k:QJ .

If we apply these remarks to quadratic fields k = Q(Vd) , we get ep =2

for all primes p that divide the discriminant d and ep =1 for all the other

primes. As n = [k:Q] = 2 , we get in fact from theorem 6.1 g = 2t-1 , where t

is the number of prime divisors of d . Moreover there are only the two automor-

phisms 1 = identity and T 2 1 with T2

=1 ; hence T=-1 and 1 -1=2.
By putting everything together we get as a special case of theorem 6.1 Gauss'

theorem 3.8,
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On the other hand the specialization of theorem 6.1 (i) to cyclic extensions
yields Takagi's theorem 4.1 (i) and (ii) and the specialization of theorem 6.1
(ii) to cyclic extensions gives an expression of the genus number already found

by Iyanaga and Tamagawa [I-T-1951] in this cyclic case.

Finally Hasse [Ha-1968] gave a description of the principal genus in an abe-
lian number field which is identical with theorem 3.5 (ii), whereby the Hilbert
norm residue symbol (————iii) for the quadratic field Q(Vd) is replaced by

Hasse's general norm symbol (———Ei—k) for the abelian field k (see [Ha-19331).

3.7 That there is a more general genus theorem for normal number fields over Q

is indicated by the following theorem of Tschebotar#w. Recall that the inertia
group Tp of a prime ideal p in a normal algebraic extension k over Q is the
subgroupkbf the Galois group Gal(k,Q) of k over Q consisting of all
automorphisms leaving all the congruence classes modulo p in k invariant
[Hib-1894-1]. If k is abelian then all TR for the prime ideals p dividing

a given prime number p in Z coincide. We then put TE = Tp . Hilbert showed
that ep is the order of Tp and that the subfield k(p) of k which is fixed
under TP is the maximal subfield of k over Q in which p is unramified

[Hib-1894-117.

The theorem of Tschebotar¥w that can be interpreted as being an arithmetic
analogue of the monodromy theorem in complex function fields now states

[Tsch-1929]

Theorem 7.1. If k 1is a normal number field over Q , then the composition
of all inertia groups ?B is the full automorphism group of k over
Q:1I TR = Gal(k,Q) the composition II taken over all prime ideals )4 in k,
and where the composition II T_ is the smallest group containing all the

groups T £

£

If L is the subfield of k whose elements are fixed under the operation of

I Tp then L is the maximal unramified extension over Q contained in k .
p ~
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Theorem 7.1 implies that L = Q ., This yields a theorem of Minkowski [Min-1891].

Theorem 7.2. For any algebraic number field k = Q over Q there is at
least one prime number p that is ramified in k , i.e. that is divided by a

power of a prime ideal Re , e#1,in k.

The corresponding theorem for complex algebraic function fields is precisely

the Welerstrass monodromy theonem that brings us back to topology.

Theorem 7.3. For any algebraic function field k = C(x) over the field of
complex rational functions there is at least one prime (x-a) , a e C that is

ramified in k .
Or in topological language:

Any not one-sheeted Riemann surface over C has at least one ramification

point, or else:

A Riemann surface over C having no ramification points is one-sheeted

over C .

3.8 One of the main motivations to study the genus group of an abelian number
field k was to gain information about the structure of the class group of k
as the former is a special quotient of the latter. In order to extend this
program to arbitrary number fields k (of finite degree over Q) Fr¥hlich

introduced the following generalization of the genus field [Fr§-1959].

Definition 8.1. Let k be an arbitrary number field of finite degree. Then
the genus f§ield Ko of k is the maximal non-ramified (abelian) extension of k

of form k * L where L is an abelian number field over Q.

If KA is the maximal abelian subfield of KG (or else the maximal abelian
subfield of the proper (i.e. narrower) Hilbert class field K of k) over qQ,
then KG is the composition of k and KA,KG =k e KA . Again the principal genus

Ek is defined as before as being the group of ray classes in k corresponding
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to K, as class field over k , and Ik/Ek is the genus group of k (b=1,

as KG is non-ramified over k) . The genus number g 1is the order of Ik/Ek

or else the degree [KG:k] . Ek js the least ideal group in k containing

the group of proper (i.e. totally positive) principal ideals P; which can be
characterized by rational congruence conditions with the help of the norm map from
k to Q. In fact, Fr¥hlich first establishes this property of Ek by extending
the characterization of Ek in the cyclic case (see 3.4 p. 50) and relates there-

after Ek with K. [Fry§-1959, Theorem 3].

G

He then applies the theory to determine the genus group for a normal non-
abelian field k of degree 6 over Q as well as for the splitting field k over
Q of the polynomial x® - a . In his second paper of the same volume he studies
relations between the genus group of a number field and the genus group of one of
its subfields allowing him to compute the genus group also in the two non-normal
cases where k is a non-cyclic cubic field and where k = Qes};) with e an odd

prime and a = t1 and e-power free integer [Fr¥-1959, II, Theorem 5 and 6].

Explicitely the structures are as follows.
Theonem 8.2.

(1) If k is a normal non-abelian number field of degree 6 (over Q)
with discriminant dk , and if M is its unique quadratic subfield with discrimi-
nant dM , then we denote by ey the number of prime divisors of dM and by e

the number of prime divisors p of dk which are prime to dM and for which

%

(——) = 1 . The genus group of k is then the direct product of ey - 1 groups

P
vl %
of order 2 and of e, §roups of order 3 . In particular g = 2 * 3 .

(ii) If k is a non-cyclic cubic field of discriminant dk = df2 , where d
is the discriminant of Q(VHE) and if e denotes the number of prime divisors
p of f with (%) = 1, then the gemus group of k is the direct product of e

groups of order 3. In particular g = 3® .




50 On the Development of the Genus of Quadratic Fomms

(iii) If k 4is the splitting field of the polynomial " - a over Z s then
its genus group is the direct product of cyclic groups of order (n,p-1) , where
P 1is running through all prime divisors of a not dividing n . Hence

g = I (n,p-1)

|__jL__
PIE,m

(iv) The genus group of k = Q (S: a) > where e is an odd prime and a = #1
an e-power free integer, is the direct product of cyclic groups of order

(" -1, running through the prime divisors of a . Hence g=1I (en, -1)
5P p g g p | P
pla

As g divides the proper (i.e. narrower) class number h of k we get in each

case a lower bound for h .

3.9 In order to construct the genus field KG of a normal number field Butts

[Bu-1973] builds on an idea in Speiser's proof [Sp-19191 of Kionecker's theorem:

Every abelian extension of Q is contained in a cyclotomic field Q(;n) s

;n being a primitive n-th root of unity.

We shall begin with the easier abelian case.

Theorem 9.1, Let k be an abelian number field with the distinct ramified
primes seeeD (dividing the discriminant of k) having ramification orders
Py s

O
. R 1 . ' .
170 (in k over Q). Put e; = eip; with e] prime to

P (i=1,...,8) . Let Mi be the subfield of the cyclotomic field Q(cp ) of
i

e .s€

s

the p.-th roots of unity whose degree over Q is e! , and N, be the subfield
i i i

.
i ] . ~ . .
Qlz ai+l) of degree p;  over Q if p; * 2 ; or if p; = 2 then Ni is either
p

i

Qlz ai+1) or the maximal real subfield of Qlz “i+2 . Li = MiNi is the compo-
P; Ps
sition of Mi and Ni . Then the genus field K. of k is the composition of

s
all the abelian fields Li , K.= 1 L
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Hence one has Leopoldts formula

.
lu =«
(]

[

[KG:Q] = e, and g =

=R
m
=

i=1 Q]

Now the normal case.

Let k be a normal number field with the distinct ramified primes

.s€ in k, i.e.

Pyse- 5Py having ramification orders e s

1°°°
€.

_ i . . .
p.c = (Bil""’»Eir) is the factorization of p; in k, or else

1~

- e. -
pig( 3 F (»Eij) ' is the factorization of P; in any of the completioms k( )
21] 'le

(j=1,...,r) over Q(p ) i.e. e; is also the ramification order of 1.5 in
i

k( ) for any j = 1,...,r . As usual g denotes the integers in k and
Rij
o stands for the integers in k Consider the maximal abelian sub-
(B' .) (B' .)
ij 1]
field A(pi) of any of the completions k( ij) (7=1,...,r) over Q(Pi) and

call the ramification order e! of p, in A(p) the abelian ramification of

i
&4
p. 4An k . Put e! =e!p.” with e! prime to p. . As before let M, be the
i i i*i i i i
subfield of Q(Cp) of degree e'i' over Q and Ni be the subfield of
T
%
Qjz aiﬂ) of degree p;” over Q (or if p; = 2 , either Qjz ui+1 or the
10 P
maximal real subfield of Q(; ai+2‘ , and Li = MiNi
Pj

Theorem 9.2, Then the genus field Ks of k is the composition of k with

G . i

s
all the abelian fields Li , K.=k e+« I L. =k + L where L =
i=1 i

(L=
[

s
Hence [L:Q] = T ei and
i=1
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[
I ei
[L:Q] _ i=1

g = [KG:k] = ['L:koj = [kO:Q] = [kO:Q]

where k0 is the maximal abelian subfield of k over Q .

The equality [KG:kJ = [L:k0] stems from the fact that k0 =Lnk and

KG = kL .

The following consequences are noteworthy.
Theorem 9.3.

(1) If k = Q(cn) is a cyclotomic field (of the n-th roots of unity),

then KG =k and g=1.

(ii) If k = Q(Q/;,cn) is a Kummer extension, n > 2 , a # *1 square free

and odd, and if Pys>-.-sPg are the prime factors of , then we take for

-2 __

(a,n)

Li the subfield of Q(cp ) over Q of degree (n,p-1) . Then
i

s
K.=%k +« T L.

G gl = k(el,...,es) where ei is a primitive element of Li over Q .

Moreover one gets Fr8hlich's formula g = I (n,p-1)

IL
Pita,m
(iii) If k = Q(Q/;) with (a,n) =1, a = *1 square free and odd, then

Kg =k
1

L, = k(el,...,es) , where Li and Gi are determined for

S
- 1

1

Q({'/E,;n) according to (ii) . Again g= I  (n,p-1)

Pl
(a,n)
Another interesting result obtained by Butts is the following [Bu-1973, p. 591.

Theorem 9.4, Every finite abelian group A is isomorphic to the genus group

Ik/Ek > Gal(KG,k) of infinitely many number fields k .
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3.10 A description of the genus field KG for any algebraic number field was
given by Bhaskaran [Bh-1976]. Let p be a prime that factors in k into the

distinct prime ideals Ris-oR, with ramification orders e

< WERETL

s’ i.e.

€ €

_ 1 s
PG =Ry «-Bs

Consider the maximal abelian subfield A(p) over Q(p) of the

S a
intersection N k( ) of all the completions of k with respect to the 2; Ip.
i=1 i

We denote by e; the ramification order of p in A(p) with respect to Q(p)

o,
and p P shall be the conductor of A There exists a unique

® o Up)
cyclic field Lp over Q of degree e; and with conductor p P .

Theorem 10.1. The genus field K, of k is the composition of k with all

the cyclic fields Lp for which e; >1 : K. =k I Lp

P

G

Moreover the following relations hold.
Proposition 10.2.

1) e; = (el,ez,...,es,w(pap)) is the greatest common divisor of all the

Q. o -1
ramification orders of p and of ¢(p P) = p P (p-1) , except when e; =2 or

o1
pp=8.

-~

(ii) e; = ([U(p) : N UQEI)],...,[U(p) : N UQRS)]) ;s ie. e; is the

-~

greatest common divisor of all the indices of the norm group of the units U

(;)

of the completion k( ) within the unit group U(p) of the p-adic numbers (the
i
norm taken from k(E ) to Q(P)) , except when p =2 and -1 ¢ N UQEi) in

1

which case e; =2 .

3.11 Furuta extended the notion of the genus field to relative algebraic normal

extensions [Fu-1967].

Deginition 11.1. Let M be an algebraic number field and k a normal ex-

tension of M of finite degree. Then the genus fiefd K of k with respect

G,M
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f0 M is the maximal unramified (abelian) extension of k of form kL where L

is an abelian extension of M .

If KA M is the maximal abelian subfield of K over M then
£

G,M

KG,M =k » KA,M .

The degree [K, ,:K] = gy 1is called the nefative genus number of k with
tl

nespect to M .

For the relative genus number Furuta discovered the following formula,

(see also [Gu-1977]).

Theorem 11.2,
r[ ]
hy T ey

Y
By Tk, :MILU UL ]

where hM is the proper (or narrow) class number of M , ?é is the ramification
order of the prime ideal P of M in the maximal abelian subfield ACR) of
k(B) over MCB) , Where P ck and ,g LR , and k0 is the maximal abelian sub-
field of k over M. UM is the group of totally positive units in M , and
Uh is its subgroup of totally positive units being also local norms in all the
P-adic extensions i with respect to ﬁ for all prime ideals P in

< ® P ®’ P k

k, i.e. if u e Uﬁ then there exists for every prime ideal P e k an element

o, € kcg) such that u = Nk

3 P

Mgy ©

®ME
Finally Gold succeded in giving a characterization of the principal genus for

these relative normal extensions by means of Hasse's general norm residue symbols

[Go-1976] so generalizing Hasse's characterization in the case of abelian extensions

over the rationals Q .,
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