Chapter 5
Decimal Fractions

In converting common fractions into decimal fractions, confining our interest to
proper fractions, we find the following cases:
3 3

=06, — =007 I
5 20 5 (D

in which the decimal terminates, i.e., the final digit is zero.
1 - 1 —_—
3 =0.3333 ..., 7 = 0.142857142857 . .. (1In)

where the decimal fraction consists of a group of digits repeated over and over,
marked by overbars. This group is called the period of the decimal. In fractions
of this class the period begins immediately after the decimal point.

5 = 7 -
6 0.8333 ..., 30 0.23333 ... (111)
which are also periodic. However, here the period does not begin immediately after
the decimal point.

The first example is trivial, for we can convert the given fraction into one
having a power of 10 as adenominator: 2 = & = 0.6. In facta terminating decimal
fraction can occur only if a/b has a denominator of the form b = 25", Suppose
b =2°5%. If @ > B (@ < B) by multiplying numerator and denominator by
5(«P [2A~9] we can convert the given fraction into one that has 10* [10#] as
denominator. For example,

3 3 52 3 75 75

0275 5 75 100 1000 20

But if the denominator contains a factor different from 2 or 5, this is
impossible — for example 7 * b can never equal any power of 10. Thus in general
we cannot transform a common fraction with an arbitrary denominator into a
terminating decimal fraction.
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And usually when converting a proper fraction into a decimal, we find that the
long division becomes an infinite process. As an example consider #:

0.07317
41)3
30
300
287
130
123
70
41
290
287
3

Reaching the remainder 3, we pause, for we recognize this to be identical with
the dividend. If the division were to be continued, then the sequence of quotients
would repeat itself, i.e., & = 0.07317 is infinitely repeating — the infinite process
of division is periodic.

At first glance the periodicity may seem to result from the fact that there are
only ten digits which may appear in the quotient, i.e., that every decimal fraction
is periodic. However, this is impossible because we can construct examples of
non-periodic decimal fractions, e.g., 0.101001000100001 . .. , where the nth 1
is followed by n zeros. Furthermore we can find decimals with very long
periods — try & which has sixteen digits in its period — so that some digits must
reappear. The key to this process is not found in the quotients. Rather we must
look to the remainders.

Suppose a/b is a reduced fraction; then there are b — 1 possible remainders.
Zero is excluded, for the termination of the decimal fraction is identical with
b = 2°5P _the case completely dismissed. Thus we consider the cases where b
contains primes other than 2 and 5—and in particular we restrict our attention
to case (II) where all the prime factors of b are different from 2 and 5. We will
show that if a/b is a reduced fraction and b is coprime to 10, then the period
begins just after the decimal point, i.e., that (b, 10) = 1 characterizes the fraction
of case (II).

Suppose we find a remainder equal to some later remainder, i.e., r, = ri,.
This certainly must happen, for there are only & — 1 possible remainders. If the
assertion is true, then the first such remainder must in fact be the numerator of
the fraction, for the dividend is counted as a remainder. From r, = r,,,, we easily
conclude that r; = ry4,4+,. But to show that the period must begin as early as
possible, we must work backwards. We arrive at r, and r;,, from:

10r,-y = g * b + 1y, 10risa=1 = Guar = b + 1.
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Subtracting, we have
10(ri=) — riea) = b(qe — Gi+a)-
But b is coprime to 10, so that by Euclid’s lemma b divides
Ti—1 = Trea-1s ie., Feey — Fisaoy = m b

But since all r, < b and the absolute value of the difference of two numbers
less than b must itself be less than b, i.e., |r,<_I - r,(M_,| < b, we have
rioy — Niea—y = 0, 0r r_y = ri4,-;. So that if b is coprime to 10 (the essential
point used in the proof) and r, = r,,, then stepwise we can show that all the
remainders with indices differing by A must be equal. Hence in case (1), the
periodicity must start as early as possible — we are sure that it begins immediately
after the decimal.

How long is the period of such a fraction? If A denotes the length of the period,
we have found that A = b — 1. For the fraction, , A is 6, for i it is 16, while
3 has a period of one digit. We can improve this inequality considerably. In
fact, the only residues (remainders) that can appear must be coprime to b. If r;
is coprime to b, then rewriting

10r, = Givr " b+ iy
as
reer = 10ry — quiy * b,

we see that, since (10, b) = 1 and (r,, b) = 1, i+, and b can have no divisor in
common. As a/b is reduced, i.e., (a, b) = 1, we can show stepwise that each
of the remainders is coprime to b, for the preceding one is also. Thus only residues
coprime to b can appear.

If b is a prime, then all the integers less than b are coprime to b. In other cases
the number of coprime residues is considerably smaller. Let us introduce the
customary notation: ¢ (b) denotes the number of residues coprime to b. In number
theory, ¢(n) is known as Euler’s function—a function quite interesting on its
own merits which we shall consider again. Here we give only a few numerical
examples easily computed by inspection. First we note that ¢(b) = b — 1.

Q) =1, ¢B) =2, @) =2, $06) =4,
$6) =2, d(H =6 ¢$®@) =4, 9 =6,
¢(10) =4,....

Not only is A = b — 1, but as we have just shown, A = ¢(b) = b — 1.
Moreover, not all numbers less than ¢(b) can serve as length of a period.
Shortly we shall prove the essential result: A must be a divisor of ¢(b). For
i, A = ¢(7) = 6; while for ##, A = 5 which is a divisor of ¢(41) = 40. How-
ever, if we did not know that 3 has a period of length 5, we could only say that
A was one of the numbers 2, 4, 5, 8, 10, 20, or 40, the divisors of ¢(41) — which
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one we could not foretell. In general the best that may be said is that A is among
the divisors of ¢(b), where A = ¢(b) is counted as a divisor.
Let us consider in detail the example #

0.142857
7
10
7
30
28
20
14
60
56
40 1
35 53
50 4 2
49 6
1

and look into the remainders which appear in the order: 1, 3, 2, 6, 4, 5, that can
be written as a cycle. Since all the possible remainders of 7 are included in this
cycle, we can write down 7 immediately. Its sequence of remainders must begin
with 2 and continue in the order: 2, 6, 4, 5, 1, 3. Hence § = 0.285714. Similarly
3 = 0.714285. And the other multiples of } could be found by a cyclic interchange
of the remainders.

Next let us examine 7. First what is ¢(21)? Instead of counting the numbers
coprime to 21, it is easier to count and eliminate those numbers less than or equal
to 21 that have factors in common with it. Of such numbers seven are three-fold
and three seven-fold; but we have counted 21 twice, so that there are nine numbers
less or equal to 21 that are not coprime to it. Hence ¢(21) = 21 — 9 = 12. Hence
we expect A to be either 2, 3, 4, 6, or 12.

0.047619
211
10
100
84
160
147
130
126
40



5 Decimal Fractions 35

21
190
189

1

Here we find A = 6 and the sequence of remainders: 1, 10, 16, 13, 4, 19. Clearly
we can read off 4§ = 0.761907. And similarly we could write down 4] * 41 - #, and
1. However, as the remainder 2 does not appear in this list, we cannot write down
#. Let us form this decimal fraction:

0.095238
212

20

200

189

110
105

50
42

80
63
170
168
2

Here A is again 6 and the new sequence of residues is: 2, 20, 11, 5, 6, 17, which
we derived by considering the first possible remainder missing from the previous
list. It is clear that the second scheme cannot contain any residues belonging to
the first, for if it did, as the periodicity begins just after the decimal point, both
sequences would be identical. Thus we have found all possible remainders, a fact
to be proved later, and we suspect that the period is indeed independent of
the numerator.

We are working with the reduced fractions a/b, i.e., (a, b) = 1, of the sort
where b is coprime to 10; and we have found that the period begins immediately
after the decimal point, i.e., r, = ri4, and @ = ry = r,. What does this mean?
Writing out the division we have:

lOr0=b'q,+r,

10r,=b-q+n

10ry-; = b+ ga-y + ray
lOrA_l =b )Y + r.
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Multiplying the first equation by 10", the second by 10", . .. , the last but one
by 10, we have:

10)\ *ro = b 'qllo)\—l + r-: IOA_I
IOA_I = b - qleA_z + ry:* 10)\_2

102"'A_2 =b *qr-1” 10 + rA_llO
10r_y=b-q),+r,.

When these are added, except for the first and last, the factors involving the r’s
will cancel, so we obtain:

10%, = b(q,10*™' 4+ ¢,10* 2+ - + ¢, 10+ q)) + rn=b+Q + 1\,

where Q, the expression in parentheses, is the period written in the form of an
integer, e.g., 4+ = 0.143857,

0=10°+4-10°+2-10"+8-10*+ 510 + 7 = 142857.

Since r, = ry = a, wehave 10’a —a = b - Q ofa(10* — 1) = b - Q. And as
a and b are coprime, b divides 10* — 1. This tells us two things:

1. there is a Ath power of 10 which diminished by 1 is divisible by b;
2. A is independent of a, for clearly A is the smallest such exponent that we
could choose such that 10* — 1 is divisible by b.

Thus the results we obtained in the case b = 21 are not fortuitous —
necessarily the period of 7; has the same length as that of #. On closer examination
of the sequences of residues:

1
21 yielding 1, 10, 16, 13, 4, 19,

2—21 yielding 2, 20, 11, 5, 8, 17,

we see that there is indeed a relation between them, namely those of the second
sequence are twice the corresponding one of the first, diminished by 21, if
necessary, to produce a residue less than 21, e.g., from 16 we have 2 - 16 = 32
and 32 — 21 = 11, the third residue of the second sequence, etc.

Now we can easily show that the length of the period, A, must be a divisor of
¢(b). Dividing b into 1, we obtain a sequence of residues: 1, r\, ry, ..., 1y,
all of which are coprime to b. If the number of these does not exhaust ¢(b), then
we can choose some other residue coprime to b, say r,, and dividing this by b,
obtain a new sequence of residues: rg, r{, ... , ri-;, which must be of the same
length as the first. All members of this second scheme must be different from those
of the previous one. For if not, since one residue entirely determines the whole
sequence of residues, if a remainder of both sequences were identical, then the
second would merely be the first all over again. But r; is not contained in the first.
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Hence we have found 2A residues which are all different. These may or may not
exhaust ¢(b). If not, we find a third set of residues, A in number, different from
the preceding, efc. Since ¢(b) is finite, eventually we must exhaust it by forming
new and entirely different sequences of residues, which can only occur in sets
containing A each. Thus ¢(b) must be a multiple of A.

&) = k * Ab),

where we write A(b) to emphasize the dependence of A on b. As examples
we have:

o21) = 12, A21) = 6, k=2,
d(41) = 40, A41) = 5, k =8,
o 7)= 6, A7) =6, k=1.

Let us return to the first conclusion we drew from the relation a(10* — 1)
= b - Q, namely: 10* — 1 is divisible by b. To derive a more abstract result
from this, we note that x* — I is divisible algebraically by x — 1, i.e.,
= 1D=x-1DE""+x**+ -+ + 1). Replacing x by 10*, we have:
10 — 1 = (10" — 1)X, where X is a polynomial in 10*. Since this is an algebraic
identity, we may choose such a k that 10t* = 10%?. And as a plays no role in
determining A or k, putting a = 1, we have 10* — 1 = bQ. This gives
10%? — 1 = bQX. Whence we conclude: 10* — 1 is divisible by b, provided
(10, b) = 1—a theorem on integers, one having nothing to do with fractions.

This is the famous Fermat—Euler theorem. If p is a prime, ¢(p) = p — 1, the
formula reads 10°~' — 1 is divisible by P, provided p # 2, 5. This theorem was
known to Fermat, one of the very greatest mathematicians of the 17th century,
if not of all time — a jurist whose contributions to mathematics, his hobby, made
him immortal, whereas his jurisprudence is forgotten. Euler put the theorem
in its most general form, which we shall shortly produce, but the essential idea
is due to Fermat. Let us make a few examples: Taking p as small as possible,
i.e., 3, we have 10° — 1 = 99 is divisible by 3; or for p = 7, we have
10° — 1 = 999999 is divisible by 7 (recall 10° — 1 = 7.142859).

Here we have the special number 10 in our formula, as a result of the fact that
we used the decimal system to write our fractions. However, the whole argument
could be reproduced using a g-adic number system, in which afy means
ag®+ Bg + v and, aBy means ag”' + Bg~2 + yg 3, defining periodic deci-
mal fractions in the same way. (To the mathematician the discussion of these
different number systems isn’t very interesting, for they are merely notations that
have nothing to do with the fundamental nature of numbers. The one that we use
is merely a linguistic heritage — probably a biological accident in that we have
10 fingers — although our language does have remnants of other systems of
notation, notably dozen, score, and gross.)

Thus we may replace 10 by any number coprime to b, and obtain: g#® — 1 is
divisible by b, provided that g and b are coprime, the Fermat—Euler theorem
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in its most general formulation. This theorem we see provides the background for
the systematic study of decimal fractions.

Let us make an example: 2°~' — 1 is divisible by p, where p is a prime greater
than 2.

p =3 2-1=4-1=3 divisible by 3;

p=275: 2*—1=16-1=15 divisible by 5;

p=T1 22—-1=64—-1=63 divisible by 7,

p=11 2°-1

1024 — 1 = 1023 divisible by 11, etc.

To satisfy curiosity we state here Fermat’s Last Theorem. We could show that
there are infinitely many integers, the so-called Pythagorean numbers, that satisfy
the equation a’ + b? = ¢?, e.g., 3* + 4> = 5%, 57 + 122 = 137, etc. Fermat
claimed there were no integers satisfying a" + b" = ¢" for n > 2. We do now
know that this is true for many n, but it is still not proved in full generality. In
part the interest of the theorem lies in the provocative way in which it was first
stated. Fermat wrote the assertion on his copy of Diophantus together with the
remark, “...1 have discovered a truly marvellous demonstration which this
margin is too narrow to contain.” However, the importance of the theorem lies
not in its content, but in the mathematics developed in the attempts to prove it—
the efforts to do so in the 19th Century yielded the new field of algebraic number
theory and the notion of ideal numbers developed first by Kummer.

To close this chapter, let us set the converse problem: Given a periodic decimal
fraction, to what common fraction does it belong? We have a(10* — 1) = bQ,
where Q is the period of the decimal fraction read as an integer. Thus
a/b = Q/(10* — 1). For example, to what common fraction does 0.09 belong?
Here Q = 9, A = 2, so thata/b = 9/(10* — 1) = 9/99 = 1/11.

Finally we note that the third case, which has not been treated here, that in
which the period of the decimal fraction does not begin immediately after the
decimal point, is the mixed case in which b has a divisor in common with 10.

Note to Chapter 5

In recent years some remarkable applications of the Fermat—Euler theorem have
come to light. It was a surprise to many people to learn that a procedure was
developed whereby a secret message could be encoded and the person encoding
the message would not be able to reverse the process and decode the message.
The procedure is as follows. Let N be a very large number which has at least two
prime factors. Assume for simplicity that N = pp,, the product of two large
primes. Then ¢(N) = (p, — 1)(p, — 1). Now, if p, and p, are very large, then
it could take a computer hundreds of years to factor N, and hence a person knowing
only N could never really determine ¢(N). Let E and D be two integers satisfying
ED = ¢(N) + 1. The person encoding the message is given the numbers N and
E. Asshown above, he cannot know D. Let us assume he has a message M (given
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in the form of a large number, say). Then he encodes the message by computing
ME, dividing this by N, and computing the remainder R. In other words, M* — R
is exactly divisible by N. Then R will be the encoded message. It is not possible
to decode this message without knowing D. To decode the message, one simply
takes R” and computes the remainder after dividing by N. This is based on the
fact that R? = M2 = M*™*!' = M (mod N) by Euler’s theorem. As a
simple example, take N = 33,¢(N) = 20,E =7,D = 3,M = 2. Since
27 = 29 (mod 33), the encoded message is R = 29. To decode the message, note
that 29° = 2 (mod 33).



