Chapter 13

Ruffini and Abel on General Equations

13.1 Introduction

Lagrange’s investigations were primarily aimed at the solution of “general” equa-

tions, i.e. equations whose coefficients are letters, such as
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(see Definition 8.1, p. 98). At about the same time when Gauss completed the
solution of the class of particular equations which arise from the division of the
circle (known as cyclotomic equations), Lagrange’s line of investigation bore new
fruits in the hands of Paolo Ruffini (1765-1822). In 1799, Ruffini published a
massive two-volume treatise: “Teoria Generale delle Equazioni” [51, t. 1, pp. 1-
324], in which he proves that the general equations of degree at least 5 are not
solvable by radicals.

Ruffini’s proof was received with skepticism by the mathematical community.
Indeed, the proof was rather hard to follow through the 516 pages of his books. A
few years after the publication, negative comments were made but, to Ruffini’s dis-
may, no clear, focused objection was raised. Vague criticism was denying Ruffini
the credit of having validly proved his claim. Negative reactions prompted Ruffini
to simplify his proof, and he eventually came up with very clean arguments, but
distrust of Ruffini’s work did not subside. Typical in this respect is the follow-
ing anecdote: in order to get a clear, motivated pronouncement from the French
Academy of Sciences, Ruffini submitted a paper to the Academy in 1810. A year
later, the referees (Lagrange, Lacroix and Legendre) had not yet given their con-
clusions. Ruffini then wrote to Delambre, who was secretary of the Academy, to
withdraw his paper. In his reply, Delambre explains the referees’ attitude:
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Whatever decision Your Referees would have reached, they had
to work considerably either to motivate their approval or to re-
fute Your proof. You know how precious is time to realize also
how reluctant most geometers are to occupy themselves for a
long time with the works of each other, and if they would have
happened not to be of Your opinion, they would have had to be
moved by a quite powerful motive to enter the lists against a
geometer so learned and so skillful. (51, t. 3, p. 59].

At least, unconvincing as it was, Ruffini’s proof seems to have compieted the
reversal of the current opinion towards general equations: while the works of
Bezout and Euler around the middle of the eighteenth century were grounded on
the opinion that general equations were solvable, and that finding the solution of
the fifth degree equations was only a matter of clever transformations, the opposite
view became common in the beginning of the nineteenth century (see Ayoub [4,
p. 274]). Some comments of (Gauss may also have been influential in this respect.
In his proof of the fundamental theorem of algebra, [23, §9], Gauss writes:

After the works of many geometers left very little hope of ever
arriving at the resolution of the general equation algebraically, it
appears more and more likely that this resolution 1s impossible
and contradictory.

He voiced again the same skepticism in Article 359 of “Disquisitiones Arithmeti-

b3

cac.

Ruffini’s credit also includes advances in the theory of permutations, which
was crucial for his proof. Ruffini’s results in this direction were soon generalized
by Cauchy. Incidentally, it is noteworthy that Cauchy was very appreciative of
Ruffini’s work and that he supported Ruffini’s claim that his proof was valid (see
[51, t. 3, pp. 88-89]). In fact, it now appears that Ruffini’s proofs do have a
significant gap, which we shall point out below.

In 1824, a new proof was found by Niels-Henrik Abel (1802-1829){!, n" 3],
independently of Ruffini’s work. An expanded version of Abel’s proof was pub-
lished in 1826 in the first issue of Crelie’s journal (the “Journal fiir die reine und
angewandte Mathematik™) [1, n® 7]. This proof also contains some minor flaws
(see [1, vol. 2, pp. 292-293]), but it essentially settled the issue of solvability of
general equations.

Abel's approach is remarkably methodical. He explains it in some detail in the
introduction to a subsequent paper: “Sur la résolution algébrique des équations”
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(1828) {1, n° 18].

To solve these equations [of degree at most 4], a uniform method
has been found, and it was believed that it could be applied to
equations of arbitrary degree; but in spite of the efforts of a La-
grange and other distinguished geometers, one was not able to
reach this goal. This led to the presumption that the algebraic
solution of general equations was impossible; but that could not
be decided, since the method which was used could not lead to
definite conclusions except in the case where the equations were
solvable. Indeed, the purpose was to solve equations, without
knowing whether this was possibie. In this case, one could get
the solution, although that was not sure at all; but if unfortu-
nately the solution happened to be impossible, one could have
sought it for ever without finding it. In order to obtain unfail-
ingly something in this matter, it is therefore necessary to take
another way. One has to cast the problem in such a form that it be
always possible to solve, which can be done with any problem.
Instead of seeking a relation of which it is not known whether
it exists or not, one has to seek whether such a relation is in-
deed possible. For instance, in the integral calculus, instead of
trying by a kind of divination or by trial and error to integrate
differential formulas, one has to look rather whether it is pos-
sible to integrate them in this or that way. When a problem is
thus presented, the statement itself contains the seed of the solu-
tion and shows the way that is to be taken; and I think that there
will be few cases where one could not reach mare or less impor-
tant propositions, even when one could not completely solve the
question because the caiculations would be too complicated.

The method which is thus advocated by Abel can be interpreted in the realm of
algebraic equations as a kind of generic method. One has to find the most gencral
form of the expected solution and work on it to investigate what kind of informa-
tion can be obtained on this expression if it is a root of the general equation, Abel
thus proves, by an intricate inductive argument, that if an expression by radicals
is a root of the general equation of some degree, then every funection of which it
is composed is a rational expression of the roots (see Theorem 13.13, p. 224, for
a precise statement). This fills a gap in Ruffini’s proofs. Some delicate arguments
involving the number of values of functions under permutations of the variables
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and, in particular, a theorem of Cauchy generalizing earlier results of Ruffini,
complete the proof. This last part of the proof can be significantly streamlined by
using arguments from the last of Ruffini’s proofs, as Wantzel later noticed. In the
following sections, we shall present this easy version, but we point out that this
approach unfortunately downplays the advances in the theory of permutations (i.e.
in the study of the symmetric group 5,,) which were prompted by Ruffini’s earlier
work.

13.2 Radical extensions

Abel’s calculations with expressions by radicals, which we discuss in this sec-
tion and the following as a first step in the proof that general equations of degree
higher than 4 are not solvable, can be adequately cast into the vocabulary of field
extensions. This point of view will be used throughout since it 1s probably more
enlightening for the modern reader.

An expression by radicals is constructed from some quantities which are re-
garded as known (usually the coefficients of an equation, in this context) by the
four usual operations of arithmetic and the extraction of roots. This means that
any such expression lies in a field obtained from the field of rational expressions
in the known quantities by successive adjunctions of roots of some orders. In fact,
it is clearly sufficient to consider roots of prime order, since if n = p; - - - p, is the

factorization of a positive integer n into prime factors, then

al/n — ( - ((al/pl)lfpz) N ')I/Pr'

This shows that an n-th root of any element a can be obtained by extracting a
p1-th root a!/P1 of a, next a pa-th root of a!/P* and so on. Moreover, it obviously
suffices to extract p-th roots of elements which are not p-th powers, otherwise the
base field is not enlarged. We thus come to the notion of a radical field extension.
Before spelling out this notion in mathematical terms, we note that, in order to
avoid some technical difficulties, we shall restrict attention thronghout the chapter
to fields of characteristic zero; in other words, we shall assume that 1414 -+1 #
0 or that every field under consideration contains (an isomorphic copy of) the field
@Q of rational numbers. This is of course the classical case, which was the only
case considered by Ruffini and Abel.

13.1. DEFINITIONS. A field R containing a field F is called a radical extension
of height 1 of F if there exist a prime number p, an element a € F' whichisnota
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p-th power in £’ and an element © € R such that
R =F(u) and uf =a.

Such an element u is sometimes denoted by a'/? or {/a, and, accordingly, one
sometimes writes

R=F(/?) o R=F(Ya).

This is in fact an abuse of notation, since the element u is not uniquely determined
by a and p. There are indeed p different p-th roots of a. Worse still, the field R
itself is in general not uniquely determined by F, a and p. For instance, there are
three subfields of C which qualify as Q(2!/2). (See however Exercises 4 and 5.)
Therefore, the notation above will be used with caution.

Radical extensions of height h, for any positive integer h, are defined induc-
tively as radical extensions of height 1 of radical extensions of height h — 1. More
precisely, a field K containing a field F' is called a radical extension of height h
of F'if there is a field £, between R and I such that K is a radical extension of
height 1 of R, and R, is a radical extension of height & — 1 of F'. Thus, in this
case we can find a tower of extensions between R and F,

ROR,DRyD--- DRy 1D F
such that, letting R = Ry and /' = R, wehave fori =0, ..., h—1
Ri = R'i+1 (a,}/p"')

for some prime number p; and some element a; € I2; ; whichis not a p;-th power
in Ri+1.

We simply term radical extension any radical extension of some (finite) height
and, for completeness, we say that any field is a radical extension of height 0 of
itself.

The definitions above are quite convenient to translate into mathematically
amenable terms questions concerning expressions by radicals. For instance, to
say that a complex number z has an expression by radicals means that there is a
radical extension of the field () of rational numbers containing z. More generally,
we shall say that an element v of a field L has an expression by radicals over some
Jfield F' contained in L if there is a radical extension of F' containing v.

Likewise, we say that a polynomial equation P(X') = 0 over some field F' is
solvable by radicals over F if there is a radical extension of F' containing a root
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of P. In the case of general equations
PX)=(X-X1) (X -X)=X"—s1 X"+ 4 (~D"s, = 0,

we are concerncd with radical expressions involving only the coefficients sq, . . . ,
8.,, $0 the base field ¥ will be the field of rational fractions in 54, ..., s, (which
can be considered as independent indeterminates, according to Remark 8.8(u),
p. 105). To be more precise, we have to specify a field of reference in which
the rational fractions are allowed to take their coeflicients. A logical choice is
of course the field ©Q of rational numbers, but in fact, since we are aiming at a
negative result, the reference field can be chosen arbitrarily large. Indeed, we
shall prove that if an equation is solvable by radicals over some field £, then it
15 solvable by radicals over every ficld L containing }'; therefore, if the general
equation of degree n is not solvable over C{s;, ..., s,), it is not sclvable over
(s1,..., 9, ) cither.

Of course, Ruffini and Abei did not address in these terms the problem of
assigning a reference field, but their free use of roots of unity suggests that all the

L Ll s LY
E

. Y 8 Y
hechoice i = L(51,...,8,)

roots of unity are at their disposal in the base field.
seems therefore close in spirit to Ruffini’s and Abel’s work.

The hypothesis that the base field contains all the roots of unity also has a
technical advantage, in that it allows more flexibility in the treatment of radical

extensions, as the next result shows:

13.2. PROPOSITION. Let R be a field containing a field F'. If R has the form
R = F(u) for some element u such that u™ € F for some integer n, and if I
contains a primitive n-th root of unity {hence all the n-th roots of unity, since the
other roots are powers of this one), then R is a radical extension of F.

In other words, in the definition of radical extensions, we need not require that
the exponent n be a prime number, nor that ©” be not the n-th power of an element
in I, provided that I contains a primitive n-th root of unity.

Proof. We argue by inductiononn. If n = 1, thenu € ', hence R = Fand R
is then a radical extension of height 0 of I'. We may thus assume that n > 2 and
that the proposition holds when the exponent of u is at most n — 1.

If » is not prime, let n = rs for some (positive) integers v, s < n. By
the induction hypothesis, F'(u) is a radical extension of F'(v") and F(u") is a
radical extension of F, since u" satisfies {v”}* € F'. Therefore, F'(u) is a radical
extension of F, since it is clear from the definition that the property of being
radical is transitive, namely, in a tower of extensions F' C K C L,if L is a radical
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extension of K and K is a radical extension of I, then L is a radical extension
of F'.

If n is prime, we consider two cases, according to whether »™ is or is not the
n-th power of an element in F'. If it is not, then R is a radical extension of I, by
definition. If it is, let

uw"t = phH"

forsome & € £'. If b = 0, then u = (0 and R = £, aradical extension of height O
of F'. If & # {, then the preceding equation yields

() -

hence 1 /b is an n-th root of unity. Since the n-th roots of unity are all in #', it
follows that w/6 € [, hence u € £ and again & = £, a radical extension of
height 0 of F'. 0

As an application, we have the following result, which will be useful later
through 1ts corollary:

13.3. PROPOSITION. Let R and L be subfields of a field K, both containing a
subfield F. Assume F contains the field C of complex numbers, so that all the
roots of unity are in F. If R is a radical extension of F, then there is a radical
extension S of L containing R and contained in K.

Proof. We argue by induction on the height of E. If this height is zero, then
R = F and we can choose 5 = L. We may thus let the height of R be & > 1 and
assume that the proposition holds for radical extensions of height at most 2 — 1.
By definition of radical extensions of height h, we can find inside /X a radical
extension 2, of F of height & — 1 and an element » such that

R = Ry(u) and uf € R

for some prime number p. By the induction hypothesis, there is a radical extension
Sy of L in K which contains ;. Then v € 51 and Proposition 13.2 shows that
S1{u) is a radical extension of L. This extension is contained in K, since u € K
and S; C K, and it contains R, since B = R;(u} and R; C S;. It thus satisfies
the required conditions. O

13.4. COROLLARY. Letwvy, ..., v, be elements of a field K containing a field F'.
Assume that F contains C and that each of vy, .. ., vy lies in a radical extension
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of F contained in K. Then there is a single radical extension of F' in K which
contains all of vy, . .., Up.

Proof. We argue by induction on n. There is nothing to prove if n = 1, so we
may assume that n > 2 and that the corollary holds for n — 1 elements. Hence,
there is a radical extension L of F'in K which contains v1, ..., vn—1. Let R be
a radical extension of F' in K containing v,,. The preceding proposition shows
that there is a radical extension & of [ in K containing R. Since & contains both
L and R, it contains vy, ..., v,. Since moreover 5 is a radical extension of I,
which is a radical extension of F, it is a radical extension of F', U

So far, we have dealt only with the case where roots of unity are in the base
ficld. In order to reduce more general situations to this case, we have to use Gauss’
result that every root of unity has an expression by radicals. Since we now have
a formal definition for “expression by radicals,” it seems worthwhile to spelil out
how Gauss’ arguments actually fit in this framework.

13.5. PROPOSITION. For any integer n and any field F, the n-th roots of unity
lie in a radical extension of F.

Proof. Tt suffices to show that a primitive n-th root of unity ¢ lies in a radical
extension of F', since the other n-th roots of unity are powers of ¢ and lie therefore
in the same radical extension as (.

We argue by induction on n. For n = 1, we have { = 1, hence ( lies in F,
which is a radical extension of height 0 of itself. We may thus assume thatn > 2
and that the proposition holds for roots of unity of exponent less than n.

If n is not prime, let n = rs for some (positive) integers r, s < n. Then
¢" is an s-th root of unity. By the induction hypothesis, we can find a radical
extension F; of F containing ¢”. By the induction hypothesis again, we can find
a radical extension Ry of R; (hence also of F') which contains a primitive r-th
root of unity. Then, since {" € Ry, it follows from Proposition 13.2 that R2(() is
a radical extension of Rg, hence of F'. The proposition is thus proved in this case.

If n is prime, then we have to use Gauss’ results. First, we can find a radical
extension R2; of F' which contains the {(n — 1}-st roots of unity, by the induction
hypothesis. We then consider the Lagrange resolvents {(w) as in the proof of
Corollary 12.29, p. 195. By Proposition 12.27, p. 193, we have

t(w)”_l € Rl

for every (n — 1)-st root of unity w. Therefore Proposition 13.2 shows that
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R, (t(w)) is a radical extension of R;. Adjoining successively all the Lagrange
resolvents ¢(w), we find a radical extension fi; of [t|, whence of F', which con-
tains t{w) for all w € py,—1. From Lagrange’s formula (p. 138) it follows that ¢
can be rationally calculated from the Lagrange resolvents, hence ¢ € R» and the
proof is complete. O

We now aim to prove the afore-mentioned fact that solvability of an equation
by radicals over some field F' implies solvability by radicals over any larger field
[.. This fact may seem obvious, since every expression by radicals involving
elements of F' is an expression by radicals involving elements of L. However, it
needs a careful justification. The point is that, in building radical extensions or
expressions by radicals, we allow only extractions of p-th roots of elements which

are not p-th powers in I, but these elements could become p-th powers in the
larger field L.

13.6. LEMMA. Let L be a field containing a field F. F.
D

SEL there iv a radieal extension & of I cuch the 3 ho identifiod to o cubfe
Of i, tnere i3 a radicdi eXiension o O i SHCn tnat £t cah pe iaer ci‘ﬁed foa aubﬁc
of 5.

Proof. We argue by induction on the height h of B. If h = 0, then £ = F' and we
can choose § = L.

If h = 1,let R = F(u) where u is such that uP = a for some element
a € F which is not a p-th power in F'. Let also K be a field containing L and
over which the polynomial X? — a splits into a product of linear factors. (The
existence of such a field & follows from Girard’s theorem (Theorem 9.3, p. 116).)
Since w is one of the roots of XP — g, it can be identified with an element in K,
and every rational fraction in u with coefficients in F', i.e. every element in R, is
then identified with an element in K. We may thus henceforth assume that R is
contained in K.

If @ is not a p-th power in L, then L(u) is a radical extension of height 1 of L,
and this extension contains R since it contains F' and w. It thus fulfills the required
conditions,

If a is a p-th power in L, then let & € L be a p-th root of a,

b = a.

Since the p-th powers of u and b are equal, it follows that

(G-
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Therefore, u/b is a p-th root of unity, and Proposition 13.5 shows that there is a
radical extension S of L which contains w/b. Since b € L, it follows that u € S,
hence B C 5 and the proof is complete in the case where the height h of R is 1.
If h > 2, the lemma readily follows from the preceding case and the induction
hypothesis. Indeed, we can find in R a subfield R; which is a radical extension
of height A — 1 of F" and such that R is a radical extension of height 1 of R;.
By the induction hypothesis, we may assume that R; is contained in a radical
extension 5 of L and, by the case h = 1 already considered, & can be identified
to a subfield of a radical extension .5 of &;. The field 5 is then a radical extension
of L and it satisfies the condition of the lemma. O

13.7. THEOREM. Let P be a polynomial with coefficients ina field F. If P(X) =
0 is solvable by radicals over F, then it is solvable by radicals over every field L

M P TII Y 0y

Proof. Let E be a radical extension of I" containing a root r of F°, The preceding
lemma shows that we may assume A is contained in some radical extension .5 of
1.. The radical extension 5 then contains the oot r, hence P(X) = 0 is solvable
by radicals over L. U

The following special case of the theorem is particularly relevant for this chap-
ter:

13.8. COROLLARY. [fthe general equation of degree n
PX)=(X—z1) (X —zp)=X" =1 X" "+ 4+ (-1)s0. =0

is not solvable by radicals over C(sy,. .., s,), then it is not solvable by radicals
over Q(s1,..., 8y) either

We may thus henceforth assume that the base field contains all the roots of
unity.

13.3  Abel’s theorem on natural irrationalities
Any proof that the general equation of some degree is not sclvable by radicals

obviously proceeds ad absurdurm. Thus, we assume by way of contradiction that
there is a radical extension R of C(sy,...,s,) which contains a root z; of the
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general equation
(X—a) (X —zp) = X" =, X" 14 5, X2 4 (=1)"s, = O,

The first step in Abel’s proof (which was missing in Ruffini’s proofs) is to show
that R can be supposed to lie inside C(x1,...,2,). This means that the ir-
rationalities which occur in an expression by radicals for a root of the general
equation of degree n can be chosen to be natural, as opposed to accessory irra-
tionalities, which designate the elements of extensions of C(s1, ..., s,) outside
C(z1,...,%n) (see Ayoub [4, p. 268]). (The terms “natural” and “accessory”
irrationalities were coined by Kronecker.)

The aim of this section is to prove this result, following Abel’s approach in [1,
n° 7, §21.

13.9. LEMMA. Let p be a prime number and let a be an element of some field F',
which is not a p-th power in I,

(@) Fork=1,...,p ~ 1, the k-th power o* is not a p-th power in F either.
(b) The polynomial X? — a is irreducible over F.

Proof. (a) If k is an integer between 1 and p — 1, then it is relatively prime to p,
whence by Theorem 7.8 (p. 86) we can find integers £ and ¢ such that pg+ k€ = 1.
Then

a = (a9)P(aF)*.
Therefore, if a* = bP for some b € F, then we have
a = (amboy",

in contradiction with the hypothesis that a is not a p-th power in I". This contra-
diction proves (a).

(b) Let P and @ be polynomials in F[X] such that
X? —a = PQ.

We may assume that P and () are monic, and we have to prove that P or () is the
constant polynomial 1. Let K be an extension of I” over which X? — a splits into
a product of linear factors. (The existence of such a field follows from Girard’s
theorem (Theorem 9.3, p. 116).) Since the roots of X? — a are the p-th roots of a,
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which are obtained from any of them by multiplication by the various p-th roots
of unity (see §7.3), we have in K[X]

H (X —wu) = PQ

wElp

where v € K is one of the p-th roots of & in K. This equation shows that P and
@ splitin K[X] into products of factors X — wu, More precisely, p,, decomposes
into a union of disjoint subsets I and J such that

P=JJiXx-wuy) ad Q=][(X-wu.
wel wed

Consider then the constant term of P, which we denote by b. The above factor-
ization of P shows that

b= (H w) (—u,)ﬁc
wel

where & denotes the number of elements of I, Since w” = 1 forany w € I, we
get by raising both sides of the preceding equality to the p-th power

(1)) = a*.

Part (a) of the lemma then shows that k = 0 or £ = p. In the first case I? = 1 and
in the second I = X? — a, whence ¢ = 1. A

Let now R be a radical extension of height 1 of some ficld F. By definition,
this means that there exists an element 2 € R such that R = F'(u) and w* = a for
some element ¢ € " which is not a p-th power in F'. Using the preceding lemma,
we can give a standard form to the elements of R.

13.10. COROLLARY. Every element v € K can be written in a unique way as
— 2 p-1
U=vp +viu 4 vgut e Uy U ,
for some elements vo, vy, ..., vp—1 € I

Proof. This readily follows from Proposition 12.15 (p. 179), by the preceding
lemma. B

In fact, when v € R is given beforehand outside ¥, then the element = can be
chosen in such a way that v; = 1 in the expression above, as we now show:
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13.11. LEMMA. Let R be a radical extension of height 1 of some field F and let
v € K. Ifv & F, then the element w € R such that R = F(u) and u? € R can be
chosen in such a way that

2 -1
v=vp +u+vou’ 4+ v 0P
for some vo, v, ..., vp—1 € F.

Proof. Let /' be an element of R such that R = F(u') and v'* = o’ for some
element o’ € F which is not a p-th power in F. By Corollary 13.10, we may write

’ ro 1,12 1p—1
v=1p+ vy +vpu v, qu

for some v, ..., v,_; € F. These elements arc not all zero since v ¢ F. Let k
be an index between 1 and p — 1 such that v} # 0, and let

k

v = v (13.1)
Raising both sides of this equation to the p-th power, we get
uP = vi.k ",

This shows that « satisfies the equation u? = a with a = v}.” a*eF.

If a is the p-th power of an element in F, then the last equation shows that a’ k
also 1s a p-th power in F'. But then it follows from Lemma 13.9(a) that a’ itself is
a p-th power in F, which contradicts the hypothesis on ©’. Therefore, a is not a
p-th power in F,

Since u € It, we obviously have F(u) C R. In order to prove that R = F'(u),
it thus suffices to show that every element in K has a rational expression in » with
coefficients in /. We first show that the powers of »’ have such expressions. For
any ¢+ = 0,...,p — 1, we get by raising both sides of equation (13.1) to the i-th
power

ut = v} (13.2)

Now, recall the permutation oy, of {0,1,...,p — 1} which maps every integer :
between 0 and p — 1 to the unique integer o (i) between 0 and p — 1 such that

ox(i) = ik mod p

(see Proposition 10.6, p. 147). By definition of o (¢), there is an integer m such
that

ik — ai{i) = pm,
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hence

uxik _ {ufp) m, 10k Ifi)l

Therefore, recalling that w'? = a’ and letting b; = (fujfa’m)—l fori =0, ...
p — 1, we get from equation {13.2)

10k ()

biut = u
fori =10,...,p— 1. Now, every z € R has an expression
p—1 _
T = Z T
i=0
withz; € Ffori=0,...,p— 1, which can be alternatively written as

r—1 _
z=Y T,
i =0

1ok (i)

as oy, is a permutation of {0, ... ,p — 1}. Substituting b;2* for u , we obtain

p—-1

i

T = E T (i) 052"
i=0

This shows that every element in A has a rational expression in & with coefficients
in F', whence R = F{u}. For the given v € R, the coefficient of w in this
expression is 1, since taking ¢ = 1 in the calculations above, we find o1 (1) = k
and m = ), whence 6y = -v;c_]. This completes the proof, I

[3.12. LEMMA. We keep the same notation as in Lemma 13.11 and assume
moreover that F contains a primitive p-th root of unity ¢ {whence all the p-th
roots of unity, since the others are powers of (). If v is a root of an equation with
coefficients in IV, then I contains p roots of this equation, and u, vy, Va, . .., Up—1
are rational expressions of these roots with coefficients in QQ(C).

Progf. Let P € F{X] be such that P’(v) = 8. Using the expression of v as in
Lemma 13.11, we derive from P another polynomial () with coefficients in F,

QUV)=Plug+ Y +mV 4+ o ¥YP ¢ F[V],

This definition is designed so that the equation P(v) = 0 yields ¢J(u) = 0. On
the other hand, » is aiso a root of the polynomial ¥'? — q, which is irreducibie
by Lemma 13.9(b). Therefore, l.emma 12.14 (p. 178) shows that Y? — o divides



Abel's theorem on natural irrationalities 223

(YY), and it follows that every root of Y7 — a is a root of Q(Y'). Since the roots
of Y? — a are the p-th roots of a, which are of the form {*u, fori = 0,...,p -1,
we have

Q") =0  fori=0,...,p—1. (13.3)
Let then
z = v + Cu 4 vl oy PP
fori =0,...,p - 1. Equation (13.3) yields
P(z) =10 fori=0,...,p—1,

which proves that R contains p roots of P. To complete the proof, we now show
that u, vg, v, . .. , vp_ are rational expressions of zg, ..., z,—1, by calculations
which are reminiscent of Lagrange’s formula (p. 138). Grouping the terms which
contain a given factor v;u in the sum of {~**2;, we have

3¢ = Z(Z Cu~k>i) vad  fork=0,...,p—1, (13.4)
i=0 F=0 =0

where we have let 17 = 1. If § £ k, then (7% is a p-th root of unity other than 1,
whengce a root of

p—1
D (X)=>_ X*
i=0

Therefore,

r—1
Z C(:i"—i’i‘]ﬂE — .
i=(

Hence, all the terms with index 7 # & vanish in the right-hand side of (13.4), and
1t remains

p—1

Zq‘ékzizp'uku" fork=40,...,p—1.

i=0

This proves that vxu* is a rational expression (indeed a linear expression} of zg,

. » 2p—1 with coefficients in Q((;). In particular, for k = 1, we see that u is
such an expression, and since v — (vkuk)u—’“, it follows that vy, va, ..., tp
also are rational expressions of 2y, ..., 2p,—; with coefficients in Q((, ). 0



224 Ruffini and Abel on General Equations

Now, we let
K= C(Ilﬂ' . 1:'[:11)1

where Iy, ..., T, are independent indeterminates over C, and we denote by F
the subfield of symmetric fractions. By Theorem 8.3 (p. 99}, we have

F=0C(s1,...,8n),
where 51, ..., s, are the elementary symmetric polynomialsin x;, ... , z,.

13.13. THEOREM {OF NATURAL IRRATIONALITIES). [fan element v &€ K lies
in a radical extension of F', then there is inside K a radical extension of F con-
taining v,

Pranf We orone hir 1
Proof. We argue b
taining v, which is assumed to exist. There is nothing to prove if the height of R
is 0 (i.e. if R = F') since in this case P lies inside K. We may thus assume the
height of R is A > 1 and consider R as a radical extension of height 1 of some
subfield K, which is a radical extension of F' of height A — 1.

If v € Ry, then we are done by the induction hypothesis. For the rest of the

proof, we may thus assume that v lies outside R;. Lemma 13.11 then shows that
R = R(u)
for some element u such that v? € Ry (for some prime p) and
v =g+t veu+ - F vy guP (13.5)

for some elements vy, va, . .., vp—1 € H1. Now, Proposition 10.1 (p. 131) (and
its proof) show that every element in K is a root of a polynomial with coefficients
in ', which splits into a product of linear factors over K (its roots are the various
“values” of the element under the permutations of =1, ..., zp). In particular, v
is a root of an equation with coefficients in /' (whence in £}, whose roots all
lie in K. Therefore, we can apply Lemma 13.12 to conclude that =, v, va, ...,
Up-1 € K.

But ©P, vy, v, ..., Up_1 also liein Ry, which is a radical extension of height
i — 1 of F. By the induction hypothesis, 4P, vy, v3, ..., Up— all lie in radical
extensions of F' inside K and, by Corollary 13.4, p. 215, we can find a single
radical extension R’ of F' inside K containing u?, vg, va, ... , vp—1. Since uP €
R, the field H'(u} is a radical extension of R', hence a radical extension of F',
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Since moreover we have already observed that w € K, we have R'{(u) C K, and
equation (13.5) shows that v € R'{u). This completes the proof. 0

13.4 Proof of the unsolvability of general equations of degree higher
than 4

In order to prove that general equations of degree higher than 4 are not solvable
by radicals, we have to show, according to Definitions 13.1 above, that forn > 5
there is no radical extension of C(s,, ..., s,) containing a root x; of the general
equation of degree n

(X —z1) (X —z2,) = X" =51 X" 4 .. 4 (=1)"s,, = 0.

ol s B o

The proof we give below is based upon Ruffini’s last proof (1813) [51, vol. 2,
pp. 162-170]. It is sometimes called the Wantzel modification of Abel’s proof
(see [51, vol. 2, p. 505] and Serret {53, n® 516]), although Wantzel was relying on
Ruffini’s papers (see Ayoub [4, p. 270]).

13.14. LEMMA. Let u and a be elements of C(x1, ..., xn) such that
uP =a

for some prime number p, and assume n. > 5. If u is invariant under the permuta-
tions

T: X1 Tg > X3y, T x; fori >3
and
T X3 X4 s Ty, i x; fori=1,2andi > 5,
then so is u.
Proof. Applying o to both sides of the equation u? = q, we get o(u)? = a, hence
o(u)f = uP.

Since the lemma is trivial if w = 0, we may assume % # 0 and divide both sides
of the preceding equation by u?, We thus obtain

() -1

U
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wheice
olu) = w,u

for some p-th root of unity w,. Applying o to both sides of this Jast equation,

we get o?{u) = w2u, next o (1) = wiu. Since o? is the identity map, we have

a3 {u) = u, whence
wh =1, (13.6)
Arguing similarly with 7 instead of ¢, we find
() = wru
with

1'13‘3 == 1
= <.

o~
Pl
Lo
~J
—-

From these equations, we also deducc
gor(u) =wswru and o o (u) = wiw .
However, since

gOoT;: L F>Xg b Ty Tg— Ty — Ty iy x; fori > 5

and
G2 GT Iy Ty Xy o Ty > Tg e T1, X5 — @, fori > 5,

we have (o o 7)® = (¢ o 7)® = 1d (the identity map), whence the arguments

above yield
{(Wew,)® = (wiw,)® =1, (13.8)
Since
W = wh{wewr)® (Wiwr) 77,
equations (13.6) and (13.8) yield
we = 1.
From (13.8), we then deduce w? = 1, and since

_ 6 ,—5
Wr = wiw,
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it follows from equation (13.7) that ¢, = 1. This shows that « is invariant under

and T. [
13.15. COROLLARY. Let R be a radical extension of C(sy,...,s,) contained
in C(xy,...,zq). If n 2 5, then every element of R is invariant under the per-

mutations o and T of Lemma 13.14.

Proof. We argue by induction on the height of R, which we denote by . If & = 0,

then B = C(sy,...,s,) and the corollary is obvious. If & > 1, then there is an
element u € R and a radical extension R; of height 4 — 1 of C(sy,..., s, ) such
that

R =R(u) and u? ¢ Ry

for some prime number p. By induction, we may assume that every element of R,
is invariant under ¢ and 7. The lemma then shows that « is also invariant under &
and 7, and, since the elements in I are rational expressions of u, it readily follows

ig imrasiasmt nadar = armd o 1
Ia Litvdlidaliilt UilJel & diid 1 . i

ithat murmrir plamanmt 3. 13
Lilat ‘:'V‘:'].}' CICLIIC AL 11 £ L

We thus reach the conclusion:
13.16. THEOREM. Ifn > 5, the general equation of degree n
PX)=(X~a) (X —z)=X" -1 X" T 4. 4 (-1)"s, =0
is not solvable by radicals over QQ(sy, . .. , sn), nor over C(s1, ..., 8n).

Proof. According to Corollary 13.8, it suffices to show that ’(X) = 0 is not
solvable by radicals over C(sy,...,s,). Assume on the contrary that there is a
radical extension 7 of C(sy,...,s,) containing a root z; of P. Changing the
numbering of x,, ..., 2, if necessary, we may assume that i = 1. Moreover,
by the theorem of natural irrationalities (Theorem 13.13), this radical extension R
may be assumed to lie within C(zy, ... ,z,). Then, Corollary 13.15 shows that
every element of R is invariant under ¢ and 7. But 1 € R and z; is not invariant
under ¢. This is a contradiction. 0]

Exercises

1. Show that over R and over C, every equation of any degree is solvable by
radicals.
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2. Show that the general cubic equation
(X — Ilj(X - EQ)(X - I3) = XS - .S:‘])(2 + 32X — 83 = 0

is solvable by radicals over Q{s;, s2, s3). Construct explicitly a radical extension
of Q(s1, s2, 53) containing one of the roots of this cubic and show that this radical
extension is not contained in Q(xy, x2, za). Thus, the solution of the general cubic
equation by radicals over (s, sz, s3) involves accessory irrationalities.

Same questions for the general equation of degree four.

3. Let {7 (resp. ¢3) be a primitive 7-th (resp. cube) root of unity. Show that Q{(7)
is not a radical extension of ¢, but that £}{(7, {3) is a radical extension of ¢}.

4. Let H be a radical extension of a field F', of the form R = F {alf ), for some
& € F which is not a p-th power in F'. Find an isomorphism which is the identity
on F'

FIX)/(XP —a) = R

Conclude that all the fields of the form F'(a'/?) arc isomorphic, under isomor-
phisms leaving F invariant,

5. Show that there are three different subfields of C of the form 9Q(2'/%). Show
that if I is a subfield of C containing a primitive p-th root of unity, then for any
a € F which is not a p-th power in F there is only one subfield of C of the form

F(al/?),

6. To make up partially for the lack of details on the early stages of the theory of
groups in Ruffini’s and Cauchy’s works, the following exercise presents a result
of Cauchy on the number of values of rational fractions under permutations of
the indeterminates, which was used in Abel’s proof that general equations are not
solvabie by radicals.

Let n be an integer, n > 3, let A = A(zy, ..., x,) be the polynomial defined
in §8.3 and let I(A) C S, be the isotropy group of A, i.e.

I{A) = {o € 8, | a(A) = A}.

(This subgroup of S,, is called the alternating group on {1, ... ,n}, and denoted
Anl)

(&) Show that any permutation of n elements is a composition of permuta-
tions which interchange two elements and leave the other elements in-
variant. (Permutations of this type are called transpositions.)
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(b) Show that a permutation leaves A invariant if and only if it is a composi-

tion of an even number of transpositions.

{c) Let p be an odd prime, p < n. Show that the cyclic permutations of

(d)

(e)

length p
ill——!-’.‘:gl—}"'l——l'ipl—iil

(where i1, ...,1, € {1,...,n}) generate F{A),

[Hint: By (b), it suffices to show that the composition of any two trans-

positions is a composition of cycles of length p.]

Let again p be an odd prime, p < n, and let V' be a rational fraction in x4,
. » T, Which takes strictly less than p values under the permutations of

Z1y ... s Ty, Show that V has the form V = R + AS where R and § are

symmetric rational fractions, hence that the number of values of V is 1

nr 9

[Hint: Show that V" is invariant under the cyclic permutations of length
p-]

Translate the result above in the following purely group-theoretical termns:
if G C 5, is a subgroup of index < p (with p prime}, then G contains the
alternating group A,.

[Hint: Use Proposition 10.5, p. 146.]



