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To help the reader to feel the style of Abel’s era and, at the same time, become
acquainted with the modern interpretation of the subject, we will reproduce both
proofs: the one that Eisenstein obtained one and a half centuries ago and the one
recently found by Rosen.

Abel only proved the possibility of the division of the lemniscate into n equal
parts with a ruler and compass for the indicated values of . He did not prove that
for the other values of n this is impossible. In [C14] it is shown that for the other
values of n it is impossible to construct the coordinates of the points that divide the
lemniscate into n equal parts with a ruler and compass. This, however, does not
mean that for the other values of n it is impossible to divide the lemniscate into n
equal parts with a ruler and compass if the lemniscate is already drawn. Indeed, use

of the lemniscate itself provides us with additional possibilities for constructions.
Considering the points of intersection of the straight lines and circles with the
lemniscate one can, in general, construct more than just quadratic irrationalities.
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Before we plunge into the study of the equation for the division of the lemnis-
cate, let us consider a simpler equation for the division of the circle. First, we will
show how to solve in square roots the equation " — 1 = 0 by a quite elementary
method, though this solution cannot be generalized to the equation for the division
of the lemniscate. Next, we will discuss the approach to the study of the solvability
of the equation 2™ — 1 = 0 in square roots that can be generalized to the equation
for the division of the lemniscate.

84.1. Construction of a regular 17-gon.
An elementary approach

The roots of the equation 2™ —1 = 0 are the vertices of a regular n-gon. Indeed,
if € = exp(2mi/n), then e,€2,...,e™ = 1 are the roots of this equation. Dividing
the polynomial 2™ — 1 by z — 1 we get the polynomial 2" ' 4+ 2™ 24 ... + 2 + 1.
Thus, if the equation

(1.1) 2 gl 42 4+1=0

is solvable in square roots, then it is possible to construct a regular n-gon with a
ruler and compass.

For n = 3 there is no problem, since the quadratic 22 + z + 1 = 0 is, without
doubt, solvable in square roots. For n = 5 equation (1.1} is also easy to solve.
Indeed, the substitution v = z + ™! turns it into u? +u —1=0.

For n = 17 it is not that easy to solve equation (1.1) in square roots. To do
so, Gauss used a special partition of the numbers €, €2, €2, ..., €'® into groups,
where € = exp(2n4/17). To get such a partition, we enumerate the given numbers
so that for a fixed ! the root €44, is obtained from ¢j, in the same fashion, namely,

by raising to a fixed power: €4, = (k)%
ERElr = Exti-

Such a numeration can be obtained by setting & = €9° where the residues of the
numbers 1, g, g2, ..., g'° after the division by 17 take all values from 1 to 16. It is
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easy to see that g = 3 possesses this property. For g = 3 the numbers €o, ..., €15
and their respective values are written one under another in the following table:
e €3 &9 g0 13 5 15 11 16 14 8 7 4 120 2 6

€0 €1 €9 €3 €4 €5 Eg Ey Eg €y €10 €11 €12 €13 €14 E€1p

Let z1 be the sum of the numbers ¢, with even indices &, and z the sum of
the numbers €, with odd indices k, i.e., :

g1 =c+e” +e® 4 e 410 48 4t 42,
go =340 &% f el 4 g1t 467 4 g12 4 &5,

Thé sum of all the roots of the equation 2" —1=0 (the root z = 1 mc}uded)

1e.,
z1 = 2(cos & + cos 8a + cos da + cos 2a).

Similarly,
z2 = 2(cos 3 + ¢cos Tax + cos bax + cos Ba).

Using the formula
2 cos pa cos ga = cos(p + g)a + cos(p — q)a
we get
z122 = 8(cos & + cos 2a + cos 3o + + - + cos 8a) = 4z + xg) = —4.

Thus, we can find z; and z2 from the quadratic equation

(1.2) : 22 +2x—-4=0.
Since
cos a + cos 2o > 2cos-m V2 > — cos8a
and cos4a > 0, it follows that 1 > 0. Hence, zo = _E:T < 0, i.e., 21 is the positive

root of equation (1.2) and x5 is the negative root.
Denoting by w1, y3, y2 and y4 the sums of the numbers e; with indices whose
residues modulo 4 are equal to 0, 1, 2 and 3, respectively, we get

y1 = ¢+ e 4 e'® 4 £ = 2(cos o + cos4a),

yo =€ + 1% 4 €8 + 2 = 2(cos 8 + cos 2a),
ys = €° 4+ €% + e + £'% = 2(cos 3a + cos 5av),
ya =0 4 e 47 + €% = 2(cos Ta + cos 6a).

It is clear that y; +y2 = 21 and yl‘ > Y2, because cos & > cos 2a and cos 4o > cos 8a.
Moreover,

y1y2 = 4(cos o + cos 4a) (cos 8 + cos 2a) = 2(cos v + - -+ + cos 8a) = —1.

Therefore, 7; and vy, satisfy the equation y? — z1y — 1 = 0. It is easy to verify that
y3 and y4 satisfy the equation 3% — zoy — 1 = 0; moreover, y3 > 4.
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Finally, let us consider z; = ¢ +€'® = 2cosa and z; = &'® + ¢ = 2cos4a,
i.e., the sums of numbers ¢;, with indices whose residues after the division by 8 are
equal to 0 and 4, respectively. Then z; > 29, z; + 22 = y1 and

2129 = 4 cos a cos 4a = 2(cos ba + cos 3a) = y3.

Therefore, 2, is the largest root of the equation 22 —y1z+ys3 = 0. Thus, the segment
of length z; = 2cos(27/17) can be constructed with a ruler and compass. Now it
is clear how to construct a regular 17-gon.

84.2. Construction of regular polygons.
Elements of Galois theory

In the preceding section we showed how to solve in square roots the equation
z'”" — 1 = 0. Now we prove that for all numbers n of the form 2"p; - - - pi, where
the p; are distinct Fermat primes, the equation 2™ —1 = 0 is also solvable in square
roots. Qur exposition will be such that a good deal of it can be generalized to the
case of the lemniscate almost without changes.

Assigning to every real number ¢ the point with coordinates (cost,sint), we get
a parameterization of the unit circle ¢ by real numbers. As a result, C turns into
an abelian group with unit element (1,0).

Since

cos(t + s) = costcoss —sintsins and sin(f + s) = sinfcoss + costsins,
the law of addition of points on this circle can be expressed as follows:
{(a,b) + (e, d) = (ac — bd, ad + bc) = (f(a, b, c,d), g(a, b, ¢, d)).
It is easy to verify that '
2(z,y) = (2,9) + (z,9) = (z* ~ v, 2ap)
and
3(z,y) = (z° — 3xy?, 322y — ¢°).

Similarly,
n(:z:,y) = (fn(xay):gn( y))’

x’
er coefficients. From the relation

where f,, and g, are polynomials with integ

cosny + isinny = (cosp + isin )™ we get
z +iy)" + (z —iy)" x+iy)" — (x —y)"
(2'1) fn(wa y) = ( ) ( ) ’ ( ) ( ) .
2 2
Let C,, be the set of points (z,y) € C such that n(z,y) = (1,0), i.e., folz,y) =1
and g,{z,y) = 0. These points can serve as vertices of a regular n-gon. It is also
clear that C,, is a subgroup of C isomorphic to Z/nZ, the additive group of residues

modulo 7.
Over C, in addition to the points of C,, there are other solutions of the system

fn(miy) =1, gn(x,’y) = (.

Let us find all these solutions. Using formulas (2.1) we can pass to an equivalent
system of equations

gn(ac,'y) =

(i)' =1, (o—iy)"=1.



