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exhaust all primitive pth roots of unity. Therefore, for a polynomial f,(z) we can
consider the Lagrange resolvent
ri=a+Ba’+ %+ 4+ e

Set r; = ri(a, £). It is easy to verify that ri(ad, 8 = B7r1(a, B°). Hence, the
quantities v and r;7f 717" do not vary when o is replaced with af. As in the case
p = 11, we can prove with the help of this property and Theorem 6.4.1 that r¥{ —1
and r;ry 17 are polynomials in § with integer coefficients. For 3 an expression
in radicals can be obtained by the induction because 3 is a root of unity of degree
p— 1 < p. The formula for « is as follows:

_3 _
1 rory rarP=4
o == 1 + 3 "'}' p—4 + ct .
r i

p—1 7

This formula gives an unambiguous expression for o after one of the values of

_ -1 .
ry = "/r’7" is chosen.

§6.5. The Abel theorem on the unsolvability
in radicals of the general quintic equation

Lagrange’s works spurred many geometers (this was the common name for all
mathematicians of that time) to begin searching for a proof of the impossibility to
solve in radicals the general quintic equation and higher degree equations. In 1788~
1813 there appeared several papers of the Italian mathematician Paulo Ruffini
(1765-1822). Following Lagrange, he considered substitutions of roots of equations
and it was he who coined the term the group of substitutions. His series of papers
culminated in the proof of the theorem on impossibility to solve in radicals the
general equations of the fifth and higher degrees.

Regrettably, this proof had an essential gap. Without justification Ruffini as-
sumed that the radicals can be rationally expressed in terms of the roots of the
initial equation (cf. Theorem 6.5.4 below).

The Norwegian mathematical genius Niels Henrik Abel (1802-1829) was the
first to give a complete proof of the theorem on unsolvability of the general quintic
equation. He exposed his proof in the memoir Proof on Impossibility of an Algebraic
Solution of General Fifth Degree Equations published in the first issue of Crelle’s
journal in 1826.

We say that the equation

(5.1) Flz)=a"+ciz" 4. -+ cp=0

is the general nth degree equation if its coefficients ¢y, ..., c, are independent vari-
ables over the ground field L. In what follows we will assume that L = Q.

Adjoining ci,...,c, to Q, we get the field A = Q(c1,...,¢n). This field is
called the rationality field of equation (5.1).

Having attached to A the roots «y,...,a, of equation (5.1) we get the field
A(F) = A(ai,...,0n), called the normal field of equation (5.1) or the Galois field
of this equation. '

We will say that equation (5.1) is solvable in radicals if A(F') is contained in
the extension R of A obtained after attaching to A certain radicals |

Pr = 60'1) P2 = an'23 ceey Pm = Vsa"n’H
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where
ai € A, as € A(p}_), az € A(pl,pg), vaey A € A(Pl,---,[)m——l)-

EXAMPLE. Let F(z) = 2?+c;2+c2. Then A = Q(c1, ¢2) and A(F) = A(\/a1),
where a; = ¢ — 4dcy € A,

Observe that the exponents p,q, ..., s of the radicals p1, p2,..., om can be as-
sumed to be primes. Indeed, if p = [m, then instead of adjoining the radical
p1 = #/a; we may consecutively adjoin the radicals p = (/a3 and p; = z/p.
Therefore, in what follows we will only consider adjoining the radicals with prime
exponents.

Suppose that equation (5.1) is solvable in radicals. Adjoin to A the primitive
roots of unity €;,...,€,, whose degrees are equal to the degrees of the radicals
P1,- -+ Pm, Tespectively. Denote the obtained field by K.

Since A C K, it follows that

A(F) C Alp1y-- -y pm) T K(p1y. -+, pm)-

To prove Abel’s theorem, we will need four auxiliary statements, Theorems 6.5.1-
6.5.4.

6.5.1. THEOREM. Let p be a prime and k a field of zero characteristic. The
polynomial xP — a 1s reducible over k if and only if a = b® for some b € k.

PROOF. Suppose zF —a = f(x)g(x), where f(z) and g(x) are polynomials over
k. Let € be a primitive pth root of unity and 8 = /a. Then

fx)=z"+az" '+ e =(z—B) - (z—e™0).

Hence, +¢'8" = ¢, € k, where | = nj + -+ + n,. Since (¢)? = 1, it follows that
(£ = (¢,)?, ie., a” = (£c,.)P. The number p is prime and 1 < r = deg f < p;
hence, rs -+ pt = 1 for certain integers s and ¢. Therefore, a = a"*aP* = (#c,a')’ =
b?, where b = +c.a® € k. |

It is also clear that if a = b7, then z? — a is reducible because it is divisible by
x—b. _ L

6.5.2. THEOREM. Let s be a prime and a; € k = K(p1,...,pi—1). If pi =
/a; ¢ k, then pt € k if and only if 1 is divisible by s.

PROOF. If I = ns, then p! = a? € k since a; € k. Now suppose that p! =a € k
and | = sq +r, where 0 < r < 5. Then a = pﬁ = (a;)? p¢ and, therefore, p] = b,
where b =a (a;)"? € k. '

Over k, the polynomials z° — a; and " — b have a common root p;; hence,
they have a common divisor whose degree does not exceed r < s. In particular, the
polynomial z° — a; is reducible over k. Theorem 6.5.1 implies that a; = b°, where
b € k. Clearly, b = €p;, where € is a primitive root of unity of degree s. Since
€ € K C k, it follows that p; € k. Contradiction. ]

We may assume that pi,...,pm is a minimal sequence of radicals (of prime
degrees) required to compute a root « of equation (5.1), i.e., any other such sequence
contains at least m radicals. In what follows we will only consider minimal sequences
of radicals. Under this assumption the following statement holds.
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6.5.3. THEOREM. Let p1,..., pm be a minimal sequence of radicals needed to
compute a root c of equation (5.1). Then a can be represented in the form

o =1ug+p+ugp® +- - Fus—1p7,
where s is the dégree of pm,p = /a,a € k = K(p1,...,pm-1) and u; € k.
PROOF. Since oo € K(p1,...,pm) = k(pm) and ps, € k, we have
(5.2) o = by 4+ by pm + baop2, + -+ be 10578,

where b; € k. The only difficulty is to ensure that by = 1. By the assumption,
o ¢ k so that at least one of the numbers by,...,b,_; is nonzero. Let b, # 0 for
some ! such that 1 < { < s. Set p = bypl . Since s is a prime, ul4+wvs = 1 for certain
integers u and v. Moreover, we have

P = by p = b0 = e pm,
i.e., pm = cp”, where ¢ = b; “a” € k. Since p,, ¢ k, it follows that p ¢ k. It is also
clear that p® = bjpls = bfa! € k.
In (5.2) replace p,, with cp* taking into account that bl = p. As a result,
we get

(5'3) o= by + bicp” + bgc2p2” +eek ot + bs"lcs——lp(sml)u'

Theorem 6.5.2 implies that p¢ € k if and only if ¢ is divisible by s. Since u and s are
relatively prime, the elements 1,p%, p®, ..., p(®~1)* are linearly independent over
k and the set of these elements coincides with the set 1, p, p?,...,p°"! (perhaps,
ordered differently). Thus, formula (5.3) gives the required expression for a:

a=by+p+byp’+---+b_1pt O

6.5.4. THEOREM. The minimal sequence of radicals py,..., pm necessary to
calculate a root o of polynomial (5.1) can be selected so that py,. .., pm are polyno-
mials over K of the roots au,...,an of polynomial (5.1).

PROOF. Start with an arbitrary minimal sequence pi,...,pm. By Theorem

6.5.3 we can replace p,, with a radical p of the same degree s so that

a=ug+p+up’+ - +us1p",

where u; € k = K{p1,...,pm-1) and p° = a € k. Let us show that for any root £
of the polynomial 2°* — a

all) =ug+E+uwml®+ -+ us18T
is a root of polynomial (5.1). Substitute z = a(¢) in the polynomial
F(z) =2"+ g™+ e
Taking into account that £° = a € k we get an expression of the form
bo +b1&+ -+ b1,

where b; € k. The polynomials z° —a and by +b1z+- -+ bs_12°~* have a common
root p; hence, they have a common divisor over k. By Theorem 6.5.1 the polynomial
x° — a is irreducible over k; hence, by = b; = --- = b;_; = 0. This means that if £
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is a root of the polynomial z* — a, then «(£) is a root of polynomial (5.1). Let ¢
be a primitive root of unity of degree s. Then £ = & p; hence,

Olr+1 = U’O + Erp+u2€2rp2 + e +us_1€(s"l)7"ps—l

forr=0,1,...,5— 1 are roots of polynomial-(5.1).
For example, for s = 3 we get

o =uo+p+u2p2,
ag = ug + £p + upe’p?,
o3 :u0+€2p+u25p2.

Since 1+ & +¢€2? = 0, we have

a1 + a2 + ag = Juyg,
1

o1 + e rag + e %03 = 3p,
o3 + 6_2042 + 6_1043 = 3’0&2,02.
Therefore, p = § (o + e2az + eas). For s > 3 we get more cumbersome formulas

but the arguments remain the same. The proof of the theorem for the last radical
Pm is completed.

Let us now turn to p,,,—1. We have shown above (for s = 3) that the expressions
ug, P, U202, . . ., Us—1p° ! can be polynomially expressed in terms of roots a, .. ., oy,
of polynomial (5.1). Moreover, they lie in the fleld K(p1,..., pm—1), so that each
of the values indicated can be represented in the form

Up + V1Pm—1 + U2P$n_1 +et Ut—zpi;—lza

where v; € K(pi,...,pm-2). The sequence of radicals p,...,pm, is minimal, so
that the equations vy = ve = --- = v4—1 = 0 cannot be simultaneously satisfied for
all the quantities because otherwise we could have excluded p,,_;. Therefore, there
exists a relation of the form

2 1
Vo + ViPm—1 + V20p,_1 + - T V10,01 = 7’(041, <. :Oén)a

where v; € K(p1,...,Pm—2), not all elements vy, ...,v;—; vanish and r(a1,...,a,)
is a polynomial over K. Consider the polynomial

G(z) = H (2 — 710y, - 0om)) s

where the product runs over all the permutations o € S,,. The coefficients of G are
the symmetric polynomials of the roots of polynomial (5.1), so that they can be
polynomially expressed in terms of the coefficients of polynomial (5.1). Thus, G is
a polynomial over K and

B =wvo+vipm-1+--+ Ut~1pf;j1

is a root of this polynomial. It is also clear that the root 8 can be expressed
by means of the radicals (with the help of the sequence of radicals p1,..., pm—1).
By Theorem 6.5.3 replacing p,,—; with the radical p’ of the same degree we may
assume that v; = 1. We can now apply to p’ the same arguments as we applied
to p. lIterating the arguments for p,,—2, and so on, down to p; completes the
proof. J
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Now we can pass to the proof of Abel’s theorem proper.

6.5.5. THEOREM (Abel). For n > 5 it is impossible to express the roots of the
general nth degree polynomial in radicals.

PROOF. Suppose that a certain root oy of the general nth degree polynomial
2" +c18™ N 4™ e e

can be expressed in radicals. Then by Theorems 6.5.1-6.5.4 there exists an expres-
sion of a; in radicals of the following particular form. The root «; is obtained by
consecutively adjoining the radicals py, ..., p,, of prime degrees to the ground field,
and these radicals, in their turn, are polynomials in the roots a4, . . . , ay, of the initial
polynomial. More precisely, let 1, ..., &, be primitive roots of unity whose degrees
are equal to the degrees of the radicals py, ..., pm, respectively, A = Q(c1,...,¢cn),
and
K=A(e1,....,em)=Qle1,...,€m,C15- -+, Cn).

Then a3 can be polynomially expressed over K in terms of pq,..., pm, le.,

oy = r(pia- <1 Pm, Cy e ')Cn)) .
where 7 is a polynomial over Q(ey,...,€m). In their turn, 01, -, Pm can be poly-
nomially expressed over K in terms of ay,...,an, i.€.,

pi =ri(0, ..., 0, C1, -0y Cn),
where r; is a polynomial over Q(e1,...,&m). Since we deal with the general poly-
nomial of degree n, we may assume that a;, ..., a, are independent variables and
ci,...,Cn are (up to a sign) the elementary symmetric polynomials of a, ..., ay.

Let us show that for n > 5 the assumption on solvability in radicals of the
general algebraic equation of degree n leads to a contradiction. To this end consider

the permutation
T 123456...7n
T \234516...n

that cyclically permutes the first 5 elements, the others being fixed. Let us prove
that under the action of T on the roots «;,..., o, the first radical p; does not
change. Since

P11 = Ti(al,...,an,ci,...,cn) = {/EI,
where a; is a polynomial of ¢1,...,c, over the field Q(ey,...,&n), the equation
p] = a; can be considered as a relation of the form

(,0(031,. .-,anjcl,...,Cn) _ O,
where ¢ is a polynomial over Q(e1,...,&m). 7
Let us show that any relation of this form is preserved under any permutation of
the roots a3,...,0n. Let 81 = oy, ...,0n = a;,, where 41, ...,%, is a permutation

of the numbers 1,2,...,n. Then

‘70(/617'“:/8n)d1:---:dn) :O'/

where d; = ¢;(f1,...,0n). Clearly, d; = ¢;(a1,...,0n) = ¢; because the functions
c¢; are symmetric, Hence,

go(ail,...,ain,cl,...,cn) = 0.
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Thus, the relation pf = a; is preserved under the action of T on the roots
aiy. .., 0n, Le, T(p]) = T(a1). Clearly, T(p}) = T(p1)?. Since a; only depends
on the symmetric functions of roots, T'(a;) = a;. Therefore, T(p;) = €}p1 and
T™(p1) = €7 p;. But T® = [ is the identity substitution, hence, e5*p; = T%(p;) =

- 5A _
p1, i.e., 9" =1,

Let us now turn to the substitutions

U— 123456...n V= 123456...n
~ \124536...n)’ ~ \231456...n)"
It is easy to verify that U2 = V3 = 1; hence, U(p1) = {'p1 and V{p;) = €¥p;, and
€3 = £3¥ = 1. Moreover, UV = T} hence,

T(p1) = VU(p1) = i p1.

A 52

_ 6
P =t e75 = 5 — 1 because 8 = e = &8 = 1.

Hence, €7 = /™ so that €7 = €
As a result we get T'(p1) = p1.

Passing consecutively to the radicals ps,. .., p,, we similarly get T(p;) = p; for
1=2,...,Mm. -
Since p; = r;(ea,...,0n,C1,...,Cn), it follows that the equation
01 =7(P1y-+yPm;sC1y--+Cn)
can be considered as a relation between a1,...,an,c1,...,cn Over Q(e1,...,6m).

This relation is preserved under the action of T, i.e.,
T(oy) =r(T(p1),--.,T(cn)) =r(p1,-..,cn)

since T'(¢;) = ¢; and T(p;) = p;- Therefore, T(a1) = o;. On the other hand, by
the definition of T we get T(c;) = ao; hence, a3 = az. The relation o3 = as
contradicts the independence of the roots of the general equation. U

§6.6. The Tschirnhaus transformations.
Quintic equations in Bring’s form

In 1683 in the journal Acta Eruditorum E.W. von Tschirnhaus! (1651-1708)
published a method for transformation of algebraic equations which, Tschirnhaus
believed, enabled one to solve in radicals the equation of any degree. Leibniz
immediately announced that Tschirnhaus’ claim on the universality of this trans-
formation was not valid. The catch is that in order to solve a quintic equation with
the help of the Tschirnhaus transformations one has to solve an equation of degree
24.

Still, the Tschirnhaus transformation has important applications. For example,
with its help any quintic equation without multiple roots can be reduced to the form
y® + 5y = a and in the process we only have to solve equations of degrees 2 and 3.
In Chapter 7 we will show that equations of such a form can then be solved using
theta functions.

1The mathematicians often write Tschirnhausen, but as is clear from the works of historians of
mathematics, the correct spelling is Tschirnhaus. (Regrettably, his original works were inaccessible
for us.) The authors.



