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and radii of o, and a, respectively. By the theorem proved at the beginning of this
section, show that the analytic continuation of f(z) beyond o, is given by

@ - [s(a+; m,@ -] =

and explain why this relation is equivalent to the symmetry principle. Hint: Observe
that a point # on «. satisfies 72 = |z — a]?2 = (z — @)(Z — @) and that two points
z1 and z; which are inverse with respect to «, are connectéd by the relation

ANH - Qv Amm - @v = r2 .
2. Show that an analytic function which maps the circle |2] < 1 onto the n-times
covered circle |w| < 1 must be a rational function with n poles.
3. Show that an apalytic function w = f(¢) which maps the unit circle fof < 1
onto the full w-plane from which the ray — o« < w < —1% has been removed can be
continued analytically beyond |2|] = 1 by the relation

1@ =1(3)

Show further that w = f(z) maps the full N.E.pbo onto the doubly covered full w-plane
and that, therefore, f(2) mubst be a rational function with two poles. Verify that, with
the additional conditions f(0) = 0, f/(0) > 0, f(2) is of the form ‘

f@) = aT— ok mv»

4. If w = f(2) maps the ring 0 < p < |z| < 1 onto the circle _8_ < 1 from which
the linear segment —a < w < a (0 < a < 1) has been removed, show that w = f(2)
maps the ring p < |2| < p~! onto the full w-plane from which the linear segment
—a Xw <L aand the rays — o <w < —a!, ! < w < » have been removed.
Show further that f(z) can be continued analytically beyond {z| = 1 by the relation

fof (3) -1

while its ooﬁﬂbﬁpaob beyond |z| = p is given by

1@ =1 (%)

6. If w = f(z) maps the rectangle with the corners —a, a, a -+ bi, —~a -+ bi Aa» b>0)
onto the half-plane Im {w} > 0 and if fl(—a) = a,f(a) = B, < B,show thatw = f@
maps the rectangle with the corners —a — b4, ¢ — b?, @ 4+ bé, —a + bi onto the full
‘w-plane from which the rays —x <w < a, 8 < w < » have been removed. If
a > B, show that the map of the large rectangle is the full w-plane from which the
linear segment 8 < w < « has been removed. )

8. Let the function f(z) be regular in a domain D whose boundary includes an
analytic arc o If the limits for 2— « of either of the expressions

Re {f@)}, Im {f@}, If — 4l

where v is a constant, are the same at all points om a, show that f(2) is regular on a-
7. If the domain b is bounded by » closed wbmwﬁs curves Cy, . , Cny and if

w,(2) denotes the harmonic measureof C, (v = 1, .. . ,n)defined in mmo Ho Chap. 1,

show that «,(2) is harmonic at all UoEdm of the boundary curves Cy, ... ., Ca .
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6. The Schwarz-Christoffel Formula. While the Riemann .mapping
theorem assures us that any two gimply-connected domains with more
than one boundary point can be mapped conformally upon each other, it
is not of much help when we are faced with the practical problem of find-
ing the mapping function which. transforms two given domains into each
other. The necessity thus arises of %ﬁ&oﬁﬁm special techniques which
will help us in the treatment of a given mapping problem. It is obviously
sufficient to adapt these techniques to the case in which one of the two
domains is a circle; if we can map two domains onto the same circle, we
can also map them onto each other. The choice of the circle as the stand-
ard domazin, or the canonical domain, in the simply-connected case has the
advantage of leading to comparatively simple formulas. We shall also
employ a half-plane in the capacity of a canonical domain if this results
in even greater simplification. ‘Since a circle and a half-plane are trans-
formed into each other by a linear
substitution, the mapping formulas
involving these two domains can be
easily transformed into each other.

While it is in the nature of things
that a simple solution of the general
mapping problem cannot be  ex-
pected, there are many important
cases in which the mapping functions
can be found by means of compara- .
tively simple devices.  In this section we shall treat the conformal Bpw- ‘
ping of a general polygon onto a-circle or a half-plane.

Let then D be a polygon iir “the-w-plane-and-ltetray, was, . . . ) WOy
denote its interior angles (see Fig. 13 for the case n = 5). In the formu-
las, it is more convenient to use the exterior angles mpy, . . . , wuy, defined
by wa, +wp, =, v =1, . . ., n. Ttis clear that u, > 0 cotresponds
to a cuouooswm ooubmu and that u, < 0 corresponds to the opposite case.
If the polygon is convex, then all numbers u, are positive. By a theorem
of elementary geometry (which is almost self-evident), the sum of all
exterior angles of a closed polygon is 2r. mmbom the ac.@wﬂamm b Eﬁ.o-
m.comm. m_uoﬁw are connected by the relation -

46) . M By =
y=1

Let now w = f(2) be an mB@GAS ?Uoﬁob that maps the upper half-plane

Fie. 13.

Im {2} > 0 onto the interior of the polygon D and let the points ay,




!
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a@s . . . ,0.inthe z-plane correspond to the vertices of the polygon whose
exterior angles are wuy, T2, . . . , Thn.

The points a3, . . . , a. dividé the real axis into n parts each of which
is mapped by w = f(2) onto a linear segment. By the symmetry princi-
ple, f(2) is therefore regular at all points of the real axis except at the
points a1, . . . , an, and across each of the intervals bounded by these
points f(z) cdn be continued analytically by simple symmetry. The
mirror image D’ of D with respect to one of its sides will thus be the con-
formal map of the lower half-plane Im {2} < 0. Applying the symmetry
principle again, this time with respect to one of the sides of D', we find
that w = f(2) maps the upper half-plane onto a figure D’/ that is congruent
with D but has a different location in the w-plane (see Fig. 14). These
two inversions return a point 2z into its original position, while a point w is

made subject to a translation and a rotation
about the origin. The value f1(z). of the function
f(z) with which we return is therefore of the form

(46") fi(2) = Af(2) + B,

where A and B are constants. It should be
noted that the singularities of fi(z) are also
situated at the points @i, . . . , a@.; obviously,
these points are not affected by inversions with respect to the 8& axis.
From (46’), we obtain

Fiq. 14,

'@ _ 7@,
MOBNHON

This shows that the wsboﬁob

_I"@®
AP.NV QANV - .w.\ ANV
returns to its initial value if z returns to its'initial position by means of two
inversions with respect to the real axis. Since, clearly, all possible
branches of f(2) are obtained from the initial branch by an even number of
inversions (all images of the upper half-plane are polygons congruent to D
and all images of the lower half-plane are congruent to the mirror image of
D), it follows that the function ¢g(2) defined in (47) is single-valued in the

whole z-plane. The singularities of g(z) can only be located at the points

A1y, « o oy Qpe

In order to determine the character of these singularities, we consider
the behavior of f(2) in the neighborhood of the point a;; for the time being,
we assume that none of the points ay, . . . , @, coincide withz = . A

small section of the real axis containing a, is mapped by w = f(z) onto two -

linear segments which intersect at w = f(a,) with theanglerx,. Consider
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now the function

(48) h(z) = [f(z) — fa,)]™

near the point z = a,. Since the mapping z— 27 (y > 0) transforms
rays emanating from the origin into rays emanating from the origin but
multiplies all angles with vertex at the origin by the factor v, it follows
that h(2) maps a small section of the real axis containing a, into two linear
segments forming the angle w. In other words, the two segments
belong to the same straight line. Thus, the function maps a linear seg-
ment containing a, onto a linear segment; by the symmetry principle, it is
therefore regular at z = @,. With &, = 1 — p,, it thus follows from (48)
that f(z) is of the form :

1@ = fa,) + @1,

where h(z) is regular at z = a, and in;.v 0, A'(a,) % 0. h(z) may also
be written in the form A(z) = (z — QLNSQY where NS@ is regular at
z=ua, and hi(a,) #.0. Using this, we obtain

1) = f@) + (& = @),
@) _
o~ Gy e,

where k(z) is.regular at z = a, and the fact that hi(a v 5 0 has been used.
Comparison with (47 v shows that the function

whence

9@ + ——

NI..Q‘

is regular at the point z = a,. Omﬁuaum through the same @Hoommﬁ.m at

all points @y, . . . , an, We thus find that the function ;
. " ,,,.
_ Hy
(49) 0 = o) + )
. y=1 .
is regular at all points a1, . . . , @ But these were the only singular

points of the single-valued function g(z). Hence, g(z) is regular and
single-valued in the entire plane (including z = «); by Liouville’s
theorem, it therefore reduces to a constant. Moreover, this constant
must' be zero. Indeed, f(2) is regular at 2 =  and has therefore an
expansion f(z) = f(®) 4+ ¢iz7* 4 cz7? 4 - - - .nearz = ». Differenti-
ating, we find that f'(z) has a zero of second order at z = o« while f/(z)
has a zero of third order there. It therefore follows from (47) that g(z)
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vanishes at z = ». Since (z — a_\v.lH also vanishes there, we conclude
from (49) that gi(») = 0. But gi(¢) was shown to be a constant and it
is therefore zero everywhere. Combining (47) and (49), we therefore

obtain
n

.‘..EANV _ N iy .
7@~ MN -4

y=

w%wimmgﬁbmgmm,mu%umm.mmo?%m. mmm?mmBmvﬁbm?baaobmmmbp:%
found to be :

_ N &,
®0)  f@) =« \o 22 + 8,

(2 — a)i(z — ag)* -+ - (2 — an)*

where o and g8 are integration constants determining the position and size’
of the polygon.

The formula (50) holds if none of the points a, coincide with the point at
infinity. However, this restriction can easily be removed by means of a
linear transformation. If, for instance, we transform the point a, into
the point at infinity by the rbmpu substitution z = a, — (1/¢), we obtain

§ 1\ A e ~Hn &w.
.\Q.v = b AQ: — a1 — lwuv ct e A@s = Op-1 — M.v A w. w.w
) I_l QE

whence, in view of (46),

- (51) 1@ + By,

i dz
=% \M G—a)m - (2 — ?.LQEL
where ay/, . . . , G, ave constants. Hence, the effect on (50) of one of
the points a, coinciding with the point at infinity simply consists in the
corresponding term being left out of the formula.
By the linear transformation

14+¢ _2=1
2= SAHIW. $= ¥

which maps |f| < 1 onto Im {z} > 0, we can also obtain from (50) a
formula for the conformal map of the unit circle onto the polygon D. éw

have
By
- [(:) -]

)Tk
- le. Q-.I_ls

SEc. 6] MAPPING OF- SIMPLY-CONNECTED DOMAINS 193

and .
_o2d
B
If we denote by b, the point .
- a, —1
b, = a, + 7

on the unit circle which is mapped onto the vertex of index », it follows
therefore from (46) and (50) that

(52) 1@ = a % i P de =t B

where the variable has again been denoted by z, and ag, 8 are constants.

By the same procedure we can also find the mapping function of the
exterior of the polygon D. Since the angles 7o, are now replaced by
2r — 7, = m(2 — ), the quantities u, = 1 — a, have to be replaced by

1-2~a)=—(1— o) = —p,. In analogy to (49), the function
. | @ N
Amwv Q»ANV - \.\ANV z — a,
. y=1
will therefore be regular at the points @y, . . . , a.. However, since the

conformal map now contains the point at infinity, we cannot conclude
without further investigation that g2(2) is a constant. Confining our-

selves to the case in which the original domain is the unit circle, and

assuming that f(0) = <, we thus have to study the behavior of the func-
tion f"/f'at 2 = 0. Since the mapping by w = f(z) is conformal at z = 0,
the singularity of .w (2) at this point is a simple pole. Hence, f(2) must be of
the form _ Lo o

i) = 19,

s&mam f1(2) is regular at z = o and £:(0) #=0. It follows that

1o, 2y G
@~ T — %v

This shows that

= @)
O o o
is regular at z = 0 and vanishes there. Combining this with the proper-
ties of the function g.(z) of (53), we find that the function

|_||.
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w.:@l NS 2 _ th
() etz O} H&
n. y=1 v=

is nmmﬂmw and single-valued at all points of the plane and has the .ﬁ&ﬁm 0
at z = 0. Hence, it reduces to the constant zero. Setting z = «, we
6nd that we must have A = 0. We thus obtain this formula

22 .

z , d
(54) f@)=a .\ (z—a)m - - - @ — aGu)* @ z0 # 0,

for the analytic function mapping |z| < 1 onto the exterior of the given
polygon. In using this formula it should be noted that u, is the exterior
angle with respect to the interior of the polygon. The actual angle of the
conformal map of |2| < 1 at the point f(a,) is (1 + p,) (see Fig. 15).
Formulas (50), (51), (52), and (54)
are referred to as the Schwarz-Chris-
toffel formula.

As an example for the use of the
Schwarz-Christoffel formula we con-
struct an analytic function w = f(2)
which maps the upper half-plane Im
{z} > 0 onto the interior of a triangle
of angles wa, 78, my. As shown in the

proof of the Riemann mapping theorem, the correspondence of three

points on the boundaries of two simply-connected domains can be
: arbitrarily prescribed. We shall thus ask for the three vertices of -the
: triangle to correspond to the points z2 =0,z = 1,2 = . Under these
conditions it follows from (51) that

(55) f(2) = Ch b 211 — 21 dz + Ca.

From (55) we can easily find the lengths of the sides of the triangle. if
a, b, ¢ denote the sides of the triangle opposite the angles ra, 8, 7v,
respectively, and we set C1 = 1, we have

_ / @ L@ ad = [l - 20 ad
| | o o T@IE)
; Hp\os (1 — p)P H&nl,iu
where I'(z) is the gamma function. In view of a + 8+ v = 1 and
I'(z)T(Q — 2) = «fsin =z]~%, this can be brought into the form

¢ ==sin ()T B)T).

7 H+\:=v

Fia. 15.

]
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Instead of evaluating ¢ and b in a similar fashion, we can also observe -
that, by elementary trigonometry,

a b ¢

sinma sinwB . sin 7y
Hence, .

1.

a = —sin wal'(e)T(8)(T), !

b = sin BT (a)T(B) T'(v).

The determination of the vertices of the triangle for C; = 1, Ca =0 is |
left as an exercise to the reader. ‘

The Schwarz-Christoffel formula remains correct if one of the corners
of the polygon coincides with the point ,
at infinity. As an example, we consider \\
the function w = f(2) which maps the
upper half-plane Im {z} > 0 onto the in- :
terior of the “half-strip”

—3r < Re {w} <3r, Im {w} >0

(see Fig. 16) in such a way that the points
z=—1,1, o and w = —im, $r, © cor-
respond to each other in this order. Since
the three angles of this “triangle’ are 4,
4, 0, we obtain from (51)

: 2 dz
@ = [t

= oy sin~?! z.4+ B.

Fia. 16.

The constants a; and 8; are determined by, the ¢onditions A
~r = f(=1) = ~drar + By, v = (1) = Frex 'k By
It follows that B; = 0, a1 = 1, whence A
w = f(z) = .mww.l..p 2.

We thus have the result that the inverse function z = sin w maps the
half-strip of Fig. 16 onto the upper half-plane Im {z} > 0.

Finally, we consider the mapping w = f(2) of the unit circle [2] < 1
onto the infinite strip —r < Re {w} < }r under the conditions .

@) =f(=1) = .

This infinite strip can be oowamgm as a polygon with two sides which, at




]
!

]
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w = o, form the angles 0. By (52),. we obtain

_ * dz _ *
\.ANVIQ&\WANI&VANIT&VITQ&] \MVHITNQI_I.QN

Hence, in view of tan=* (+1) = Z4r, it follows that a2 = 1, 82 = 0 and,
therefore,

f(z) = tan—tw.

The inverse function w = tan z thus maps the infinite strip —ir <
Re {w} < 4 onto the unit circle |z] < 1. It should be pointed out that
the use of the Schwarz-Christoffel formula in this degeneraté case requires
mwmﬁm_ justification and that it is easier to verify the result directly. The
reader is recommended to do so by means of the known vwovmﬂéom of the
function tan w. .

EXERCISES

1. Show that
’ _ dz

w= \. )\NQ. — 22)

H%mvm the upper half-plane Im {z} > 0 onto the interior of a square of side length °

1 I va

2\ 2r 4
2. Show that

A\ z  dz

V1—2
Bp@m |e] < 1 onto the interior of a square of diagonal [ w AV 2x]” HH.N@v ’
3. Show that
Z &/ )
= \M k. dz, zo # 0,
- Jzo Z

maps |2| < 1 onto the mﬁmmﬂon of a square.
4. Show that
fz  dz
e b 2
A —
maps |z} < 1 onto the inside of a regular voaamow of order n whose side length is
1 1

2 Illlol .
H Hlmﬁ n) .

T oy
)

s (=298
o akuﬁ% T S

5. Show that

w =
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_maps the unit circle [2| < 1 onto the uabaw.mums o». Fig. 17, ¥ Ri is the H.m_mEm of the.

cireumscribed circle, show that
0 .
R = .\L @A — #)Q + 5)—t di,

whence, by the substitution
. 1L+
H — b
1

R= 5 u—fh(l — wytdu

H

and thus

7 = TAIE®
o . 2% - BT (%)
6. Show that the function

¢ g"\n && .
JO (1 —20) /1 F 24

Fia. 17. : Fic.18. ]

maps’ _u_ A 1 onto the domain indicated in Fig. 18, and show that the width o is

dx
<. 5 +af) VT = 2
e V2 + i)

II

a

7. Show that the function

) Y zzzzzz \\\\\\\\\\\\\\\\\\\
w = .\.N 1 — 2 cos 2az* + 2* de Y7274 @\\\\\\\\\\\\\\\\
0o (1 —22)(1 42292 B 0:
- [#[sin?a (1 —2%) cos? @ YILL SIS0 \\\\\\\\\\\\\\\\\\\
= \ _HH —a T A+ ;4% T Do 7
_1., 142 2 cos? o < Fre. 19.
I.MmE eLomAHINv:THuTuN ,

maps |z{ < 1.onto the full w-plane which has been cut as indicated in Fig. 19. Show
that the distances a and b are given by

a + b = flei®) = w. sin? « log cot 3« + % cos 3o 4+ %t sin? o




)
‘
!
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8. Using the ;symmetry principle, show that the function w = sin z maps the
infinite strip —47 < Re {2} < %= onto the full w-plane which has been cut along the
tworays —o <w << -L1S w< o,

9. Show that an analytic functionw = f(z) which maps the unit circle onto a convex
polygon and satisfies f(0) = 0, f/(0) = 1 must be of the form

) = \W u|:||&u|ltlll
[T @ — etwayer

.C!VO‘OMQEANH.Q

and deduce that f(z) is subject to the inequalities

Ol S g W@l <7

] _N_“bAH.
- P

10. Show that the entire w-plane which has been cut along theray —» < w < —%
can be regarded as a polygon with the two vertices w = —% and w = «» and the
corresponding exterior angles —# and 3x. Using the Schwarz-Christoffel formula,
show then that the:function w = f(z) which maps |2| < 1 onto this cut planeand
satisfies f(—1) = —%, f(1) = =, f(0) = 0, is of the form

w = f(z) = aT=7 Nvu
7. Domains Bounded by Circular Arcs. In this section we shall con-
sider the conformal mapping of domains which are bounded by a finite
number of circular ares. For greater
brevity, such a domain will be referred
to as a curvilinear polygon (Fig. 20).
Our aim is to find the function w = f(z)
which maps the upper half-plane Re
{z} > 0 onto the interior of this figure.
In the similar problem of the preceding
section, the crucial step was the intro-
duction of the differential operator w’’/w’
which is not affected if the function w is
replaced by aw + b, where a and b are
Fra. 20. arbitrary constants. To put it differ-
ently, this operator is invariant under a
linear substitution which transforms any straight line into any other
straight line. In the present problem, the domain in question is not
bounded by linear segments but by circular arcs, and it may therefore be
expected that a fundamental role will be played by a differential operator
which is not susceptible to transformations carrying circles into cireles,
t.e.; general linear transformations.
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" 'We shall show that the differential operator

(W 1{w'\? L, dw
(56) {wyz} = Aﬂc.\. — MA.%V ) w' =

which is known by the name of the Schwarzian derivative or the Schwarzian
differential parameter, has precisely this bwovog% In the notation (56),
this amounts to showing that

57) (Wel = {we), W = i N 0,

ez i+ d
where a, b, ¢, d are constants. Hg identity (57) can be confirmed by a
formal computation. We 5;6

(ad — be) @av
% (cw + d)? &vn
whence, by logarithmic mmmmambﬂmao?
.S\.\\ g\\ wﬁg\
WS W T wtd
Hence, i
. wy w'’ 2ctw'? 2cw’’
Aﬁv IA :V + @S:_u&vnlaél_n&
and v

W\ ASI: n+ 4w’ dow’”
w) w’ cw+d)? cw-t+d

w' ’ W 2 w'’ ! 1/ w’ 2
5 -1 - -4
ﬂEow in view of (56), proves (57). :

- Returning now to the problem of mapping the upper rmm.vﬂmbm onto
the curvilinear polygon, we first observe that, in view of the symmetry
principle, the mapping function w = f(z) must be regular at all points of
the real axis except at the points ay, a5, . .. , @, which correspond to the
vertices of the polygon. In view of the fact that the mapping 2z — f(2) i8
conformal at all points of Im {z} > 0 and at the.points of the real axis
other than a,, » = 1, . . . , n, the derivative f'(z) does not vanish there.
It follows that the expression {w,z} [w = f(2)]is H.mm.&@u in the closed half-
plane Im {2z} > 0, with the exception of the points a,. We now use the
invariance property (57) of the Schwarzian derivative. By a suitable
linear transformation, any one of the.circular ares bounding our polygon

and therefore




)
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can be mapped onto part of the real axis. If w — W is this linear trans-
formation, it follows from (57) that {w,2} = {W,z}. Now the transfor-
mation z— W maps a part of the real axis—the linear segment a, < z <
@y41, say—onto another part of the real axis. For these values of 2, the
function W = W (2) is a real function, and the same is therefore true of its

derivatives. In view of the definition (56) of the Schwarzian derivative

{W 2}, it follows that {W,z} takes real values for a, < z < a,,1. Hence,
{w,2} is also real for a, < z < a,41. We thus have proved that the
Schwarzian derivative {w,z} of the mapping function w = f(z) is real at
all points of the real axis except at the points ai, . . . , a@,.

. At the points a1, . . . , @, the function w = f(2)—and therefore &mo
;m Schwarzian derivative—will have singularities. In order to study the
nature of these singularities of {w,z}, we use again the invariance of {w,z}
with respect to an arbitrary linear transformation. Considering, in par-
ticular, the vertex corresponding to z = a,, we can perform a linear trans-
formation which carries this vertex into the origin and transforms the two
circles meeting at this vertex with the angle ra, (see Fig. 20) into two
straight lines. Since the mapping is conformal, these two straight lines
will meet at the origin with the same angle ra,. Now {w,z} was not
affected by this linear transformation; hence, the singularity of the func-
tion {w,z} at z = a, can be obtained from the assumption that the func-
tion w = f(2) maps a piece of the real axis containing z = a, onto two
linear segments meeting at the origin with the angle ra,. As shown in
the preceding section, such a function f(2) is of the form .

,msm@ng%ﬁgw

where f1(2) is H.omd_mh at z = a,, fi(a,) # 0, and fi(z) is a real function if 2
isreal. Using this representation, we obtain, by an elementary computa-
tion, :

0 P@OT _1l-ar . B L.
wet = 5] -3[FE] - S8G—ar T i-g THEO,
%wﬁ..m f2(2) is regular at z = a, and
1 — va .w.u. AQGV
.hu [24% %;QL

is real. By applying the same procedure ao all the points ay, . . . , an,
we SEm find g@& ga mmvwmmﬁow
. n . 2 . n
0 H 1 - a B,
B DA cErs A M

v=1 v=1

responds to z =
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is regularat the points as, . . . , @, and, therefore, at all points of the real
axis. This expression is, moreover, real at all points of the real -axis.
Indeed, {w,z} was shown above to be real for real 2, and the reality of the
terms involving (z — a,)~! and (2 — a,)~? follows from the fact that the
constants a,, B, @, are real. But, as shown in Sec. 10, Chap. III, an
analytic function which is regular in the closure of a domain and takes real
values- on the boundary reduces to a constant. Hence, the function
w = f(z) mapping Im {2} > 0 onto a curviliriear @&@QS@ with angles

way, . . ., TO, Satisfies the differential equadtion

n’ n

GO ?&uHMmuﬁl. b 4,

2 — Ay

pe=1 p=1

where B1, . . ., Ba, ¥ are 3& 83&93«.
The constants y and g, are, however, not entirely independent of each
other. If none of the points a1, . . . , @, coincide with the point at

-infinity, w = f(2) must beregularatz = «. ° Hence, there is an expansion

Je) = aon_. + R
which converges near z = «. Inserting this in (56), we find by a formal
computation that the expansion of {w,z} near z = « gtarts with the term

in z™%. Since the first terms of the corresponding mxwmbmuoﬁ of the right-
rmu&. side of (58) are

1N 1 R
<¢|MMWA&:TMMMWﬁ@ﬁ!+|MAH|.gsg

,.. eﬂH. . .vﬂw, " n ) . -
+muhw M [8,a,% -+ Q..G.. -~ Qewv”_ +oeee,

it follows that the conditions

Yo-0, 3 pas+

1

1 - Q_\uw = 0,

(59) v =0,

[Br? 4 as(1 — )] =

;

‘\
Al
] N E

1

must .wm.m@ammmm. The reader will confirm' without &mmaﬁa% that the
first two conditions (59).also hold if one of the vertices of the polygon cor-
« and, that, in this case, the expansion of {w,z} near
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z = = starts'with the term 3(1 — o222, if 7a is the coﬁmmvob&bm mbmwm
of the polygon.

Tt is easy to see that the four identities Amwv are the only general rela-
tions which can exist between the constants entering the equation (58).

The solutions of (58) must be able to represent the most general curvi--

linear polygon P, whose sides are n circular arcs. Since a circle is deter-
mined by 3n real parameters (radius and coordinates of the center), there
is a 3n-parameter family of such polygons. From these we have to deduct
six real parameters since the equation (58) determines P, only up to an
arbitrary linear transformation depending on six real parameters (three

arbitrary points can be made to correspond to three given points). This'

leaves 3n — 6 independent real parameters determining a polygon P..
In (58), there appear explicitly 3n + 1 parameters, namely, v and the
constants a,, @,, 8,. Deducting from these the four relations (59), we
still have a balance of 3n -— 3, three more than we need. However, this
excess of parameters is only apparent.. By a linear transformation of the
upper half-plane onto itself, three of the points ai, . . ., @, can be
brought into prescribed positions on the real axis, thus eliminating
another triple of constants entering (58). The number of these constants
is thus reduced to 3n — 6. Since this is precisely the number of parame-
ters characterizing a polygon P,, it follows that no more relations between
the constants in (58) can be expected.

The difficulty in constructing the mapping function of a given curvi-
linear polygon from the differential equation (58) is due not so much to
the fact that we have to integrate a differential equation of the third order;
we shall see presently that our task can be reduced to the integration of a
comparatively simple linear differential equation of the second order.
The real difficulty is caused by the fact that the connection between the
constants entering (58)—excepting, of course, the a, which are given by
the angles—and the geometric configuration of the polygon P, is extremely
unobvious. n — 3 of these constants can be determined by ‘‘non-
Euclidean” conditions, namely, by prescribing the points a, on the real
z-axis which are to correspond by the mapping w = f(2) to the vertices of
P, (it has been mentioned before that three of the points a, are arbitrary).
Deducting further the n constants o, which are given by the angles of P,
we are thus left with n — 3 constants, the so-called accessory parameters,
whose determination by means of geometric conditions, whether Euclidean
or non-Euclidean, is an extremely difficult task. Except for the case

= 2 (which can be treated by much more elementary means), the only

- case which is free of accessory parameters is that of a curvilinear triangle.

In this case, all constants entering the equation (58) can be expressed in
terms of the given quantities. If we write a1 = o, az = 8, az = ¥,

S
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a; = a, a; = b, a3 = ¢, it follows from (59) and an elementary computa-
tion that the equation (58) reduces in this case to

H ,. TIQNE.IGXQI&
—a)z—b(E—rc) 2 z2—a

Hluw@lav@..& Hlewelaxals_
+ 2 z2—D> A 2 z—¢ a

(60) {we} =

This expression can be simplified by identifying a, b, ¢ with the points
=0,z = o,z =1, respectively. If welet b— « in (60), the expres-
sions .
a—b ®=—a)yb—o .¢—b
z2—0b (z —b)? z2—0b

o
tend to 1 and. we obtain.

_ 1 l—a?a—c¢c , 1—=8  1—9*¢c—al
g.mwlﬁm‘,lav@l&—w 3 z-—at 73 T3 NIL.

m.mbom, fora =0,¢ =1,

1 ﬁl.plaw 1—p

- 11—
IS % T T g

tw,2} 2 — 1)

which can also be brought into the form _ |

., L l—a 1=y g1
(61) {wye} = o2~ T 2(z — 1)2 + 2z(z — 1)

However, before we enter into a further discussion of (61), we have to
examine the differential equation (58) in greater detail. If w is a solution |
of (58), the same is true of the function W defined in (57) which contains
three arbitrary constants (one of the four constants a, b, ¢, d ¢an be made
equal to 1 without altering the value of W). Since, on the other hand,
(58) is a differential equation of the third order whose general solution
cannot contain more than three independent arbitrary constants, it is
thus sufficient to find one moHsﬁou of (58); the general solution §= then.
follow by an arbitrary linear ﬁmbmmogpﬁou. The finding of one particu-
lar solution is further facilitated by a connection existing between an equa-
tion of the type (58) and a linear differential equation of the second order.
The result to which we are referring is the following. - If u; and u, are two
linearly independent %NS.:SM of the linear differential equation

uw'(2) + p(Dulz) =




204 - CONFORMAL MAPPING [Crar. V
then | i
) = 28

. " sSA&v
is & solution of the equation . .
@ fwel =200

The truth of this result is easily confirmed. Substituting u.w for u; in
the equation ;" + pu: = 0, we obtain

usw’’ + 2ua'w’ + wu + pug) =

and therefore, in view of u,"" + pus = 0, uaw’’ + 2u/w’ ='0. Hence,

and thus

(22 —L(#Y 2 g (@) — o (Y o — 2w,
S\ 2 \w Us Us U

In view of us’’ + pus = 0 and (56), this is equivalent to (62).
Combining (62) with (58) and (59), we thus obtain the following result.
If w = f(2) maps the upper half-plane Im {z}.> 0 onto a curvilinear

polygon composed of n circular arcs and if the point z = a, on the real axis

corresponds to a vertex of angle ro,, then

@ w3

where ui(2) and gﬁuv are two Nssaal@ \5&%@3&%& solutions 8,. Q& linear

&%&smﬁs& S:&ﬁﬁ

G - we+|r) Aoe u@) =
R Am - a‘vw m - 3

and the real 83&.933 B, are wgg.@& to the relations

N

(65) M B =0, ) (208, +1—af =
_“mug‘w I_l QvAH - Q,env~ =
-.MH ’ .

Since a differential equation of the type (64) is easily solved in terms of
power series expansions, our mapping problem is therefore to be regarded

$zc. 7] - MAPPING OF SIMPLY-CONNECTED DOMAINS 205

as solved if the constants 8, are known. However, as already pointed
out, the determination of the # — 3 independent constants 8; in terms of
the geometrical configuration of &Wm curvilinear wow%mou isan mMomombpm_%
difficult task.

A complete treatment is possible in aum case of Poﬁ&:ﬂo@a triangle.
If wa, w8, my are the angles of the triangle and z = 0, « , 1 the points cor-
responding to the vertices, it follows from (61) that the %m.mamwﬁ& equa-

tion (64) S_mmm the form S
" 1 - a2 1 — 2 Qun_neml.mwl.w”_ _
A8~&6+ ﬁ 7 temrt T e=n =%

Since we are interested not in the individual solutions of this equation
but in the quotient (63) of two solutions, we may umw_mom va by a differ-
ential mﬂdmﬂob of the type

(67) ¥+ PRY + Q@Y =
whose solutions are related to those of (66) by the identity
® y(@) = o(@)u(?),

where ¢(2) is a given function. If y1(2) and @%mv are two wwmma% E&m‘
pendent solutions of (67), we &mmz% have

0@ _ wm@)
ZORNO)

where u1(2) and us(2) are linearly independent solutions of (66). Taking

- the function ¢(2) in (68) to be of the form

N z
Sifroa
q@ w\ @) de

we find v% an elementary ooB@ﬁpEow that the m&zmﬁob aqv Hm o&ﬁ?&mﬁ
to the equation

w4+ E iP? — 3P =
for the function u = u(2) defined in (68). A comparison with (66) shows

therefore that the equations (66) mbm. (67) will be equivalent (for.our pur-
wOmomv if the relation

. ll 1 - Qn HII.J\w . QNI_IJ\ «l..mn -1
88 @Ilwwliw ﬁ 2 +.®ICN+ 2z — 1) H_

.Hm mpﬂmm& ﬁ? Fpﬁw ; mmmbmxmuemoﬁogmummgbueomwoé arm._.. 83
holds if :
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; a.ISIT@.._..C.m : _ _ __ab
wﬁav = NAH — Nv ) @O&vl MNM||||NV.~

where the constants a, b, ¢ are defined by

AQOV Q"W.AHI_IEJQI.«\V“ @"WAHIQIRIQVN c=1—a

‘With these values of P(z) and @Q(z), the equation (67) can be g.oc.mg into

the form

(71) 21 —2)y" +lc—(@+ b+ Dazly — aby =

This differential equation is known as the hypergeometric equation and
plays an important part in-many branches of pure and applied mathe-
matical analysis. The properties of its solutions have been thoroughly
investigated and have been made the subject of an extensive literature.
Those properties of the solutions of (71) which are relevant from our
present point of view will be found in the chapter on the hypergeometric
function in Whittaker-Watson’s “ Modern Analysis,”” to which the reader-
is referred.

Summing up, we thus have the following result: The function w = f(z)
which maps the upper half-plane Im {z} > 0 onto the interior of a curvi-
linear triangle with the angles wa, =B, m¥ is of the form

_ @)
.\. ANV Vs Aan
where y.1(2) and ys(2) are two linearly independent solutions of the hyper-
geometric equation (71) and the constants a, b, ¢ in (71) are 35&& toa, B,y
by (70).
The equation (71) is solved by the hypergeometric series’

ab | afa+ Db+ 1
(72) Flaper) =1+ T2+ c(c + ACN_ v

afe + (@ + 2)b(b + 1)(b + 2)
c(ec + 1)(c + 2)3!

+ R e _u_Ar

as the reader will verify without difficulty. The function F (a,b,¢;z) can:

also be represented in the form of a definite integral. We have

(73) F(ab,ecp) = I'(e)

1 .
TOTe =5 J, & G070 — )~ ds

where the conditions b > 0, ¢ > b are bmommm_mq for the existence of the
integral. The identity of (73) and the series (72) is easily established’ by
oNUmBQEm (1 — zt)= by powers of z and integrating term by term.- ‘I
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view of (70), the conditions b > 0, ¢ > b are equivalent toa + § + v < 1,
a < 1+ B+ v; both will therefore be satisfied if the sum of the three
angles of the curvilinear triangle is smaller than #. The integral Tepre-
sentation (73) has many advantages over the infinite series (72). While
the use of (72) is restricted to values of z such that |2| < 1, no such restric.
tion applies to (78). (73) may therefore be used for all values of z in the
upper half-plane. - Besides, the convergence of the series (72) is very slow/
unless |2| is small, while drm value of the integral (73) can be easily com-
puted with great accuracy.

For the solution of our mapping problem we need yet another solution
of the equation (71). Such a solution is easily obtained from the observa-
tion that the substitution of 1 — z for z transforms (71) into

zl—2y"+e+b—c+1—(a+b+ zly’ — aby = 0,

which is another hypergeometric equation. The parameters of this equa-
tion are a1 =@, by =b, ¢c1=a+b—c+ 1. A glance at (73) shows
that this equation is solved by

(74) = [l - e — e a,

where the conditions b > 0 and a > ¢ — 1 are required for the existence
of the integral. These conditions are identical with o + 8 + v < 1,
Y — 8 — a <1, and are therefore satisfied if the sum of the angles is
smaller than . 1If, in (74), z is again replaced by 1 — 2, we obtain a solu-

tion-of the equation (71); the confirmation that (74), after this substitu--

tion, is not a constant multiple of (73) is left as an exercise to the reader.
Our result concerning the mapping function of the osuﬁrbmmu triangle
takes thus the following explicit form.

The function

\ 1:+n+u+sﬁ - alwain?,\vﬁ - u&l%..i?t dt

(75) w= x@
\ leﬁ+a+u+iﬁ. —_ “vlwﬁlpluf«vc — .u\ + mnvlwﬁlaiwlqv dt

maps the upper half-plane Im {2z} > 0 onto a curvilinezar triangle with %«
angles wa, wB, my, provided the sum of the angles is smaller than .

If « 4+ 8+ v = 1, the triangle can be made rectilinear by a mEamEm
linear ewmbmmouBmEob and the mapping function can be constructed by
means of the Schwarz-Christoffel formula. If + 8 <+ v > 1, then (73)

and (74) have to be replaced by integral H.mvwmwmbgﬁobm of A.&m hyper-

geometric function which converge for these values of the parameters.
The interested reader will find integral representations of ﬁzm type in the-
book of Whittaker and Watson mentioned above.
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A further discussion of the ?boﬁou f @ defined in (75) will be found in
See. 5, Chap. VI.

'EXERCISES
1. Using (75) and the identities

CfL i T(T(s) .
\r ¢ Hﬁlc &lﬁe‘+uv~ .sVP«.VP
CTOTA ~1) = oy

show that the vertices with the angles ra and wy (corresponding to z = 0 and z =
respectively) are situated at the points

sin ra
s R ——
o csg(a—B—7)
and
cosZ(a+B =)
w = '
sin s.Q
respectively. :
2. If « = v, show that the function (75) mpﬁmmmm the relation x@xﬁ —2) =
Use your result to prove that w = f(¢) maps the straight line Re {z} = 4 onto vpun

of the circumference |w| = 1. Hint: Use the fact that—for suitable %amamemﬁoum
of the powers under the integral signs—f(z).is real for 0 < z < 1, and apply the
symmetry principle. )

8. Show that in the case in which the three circles forming the curvilinear triangle
are tangent to each other (Fig. 21), the mapping function (75) takes the form

_ _T@
f@) = T — NV«
where o .
dt

1
u& Vil -0 —a)

Show further that this is equivalent to

T(2)

_ K@
.\.ANV NWQ. _ Nv

. . where
m,E.. NH. dt

1
K= Vi=ma=m

4. Show that gm,mas.wﬂon (58) for the function w = f(z) which maps Im {2} > 0

onto the interior of a crescent-shaped (or lense-shaped, as the case may be) figure of
angle o (see m_Hm 22)is .

(1.— a?®)(a — b)?

*\S.‘Nw .“ 20 — a)2(z — 3&

y = (z — b)* and deduce that the mapping function is of the form

Src. 8] MAPPING OF SIMPLY-CONNECTED .UQE&ES@ 209
where a and b.are the points ‘on the real axis corresponding to the vertices. - Show

further that the associated linear differential equation

(L—o@=—b)2 o

Rl TP T S T

is equivalent to the differential oﬂﬂmﬁoﬁ

H \ QAHIQV .
nls+nl~LQ nlev@lsn_\ 0.

v+ -a

Verify that the latter m@ﬁpmob has the solutions Q = (2 — a)* and

A(z — a)* + B(z — b)=
A P LIy Ty T

where \w B, C, D are. ooBEmN ooumgﬁm mou SWSW AD — BC # 0,

8. Univalent Functions. .Of mw@mS& g@oﬁmgm from
the point of view of conformal mapping are -those
analytic functions f@) which are univalent in a given
domain D. We recall that a univalent function in D is characterized
_o% the fact that it takes in D no value’ more than onece and that,
ooummpsz.P‘wv it maps D onto a schlicht domain, ¢.e., a domain iﬁow
is not self-overlapping and contains no branch points. For the lat-
ter reason, univalent functions are also often referred to as schlicht

Fia. 22.

" functions. - In the present section, we shall investigate some of the proper-

ties of analytic functions which are univalent in a given simply-connected

domain D. We may, without an essential restriction of the generality’

of our considerations, confine ourselves to the case in which D is the unit
circle. Indeed, by gm Riemann mapping theorem, any simply-connected

domain can be mapped onto the unit circle; accordingly, any univalent -

funetion in D is associated with a univalent ?woﬂob in the unit circle and
the properties of the latter function can be easily translated ‘into proper-
ties of the original function if the function mapping D onto %5 unit circle
is known. " The choice of -the unit circle as the domain of definition of a
univalent funection has the mg&sn&mmo of simplifying the aoBﬁﬂgﬂowm
and of leading to short and elegant formulas.- -

A function f(z) which is regular and univalent in the unit circle may
further be normalized by the conditions f(0) = 0, f/(0) = 1. Indeed, if
x@ is univalent, so is the ?boﬁob ‘

1@ — £(0)
.\HANV , .\:AOV . “. |
and any property of the function fi(z) is immediately translated into a
corresponding property. of f(z); we add that the division by f’ (0). is per-
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14. Show that the transformation
. e
w =8 _HH .IL
mapg the unit circle |2| < 1 onto a domain D of the following description: D covers
the entire w-plane on infinity of times, with the exception of the point w = « and the

linear segment —1 < w < 1; the points w = » and w = +1 are not covered at all
and the segment —1 < w < 1 is covered by D exactly once.

3. Elliptic Functions. In the two preceding sections we were studying
the conformal mapping properties of analytic functions which were known
a priori. In this section we shall adopt a somewhat different procedure.
Since it is assumed that the reader is not acquainted with the theory of
elliptic functions, we shall define some of the fundamental elliptic func-
tions by means of certain conformal mappings effected by them, and we

shall then proceed to derive some of their other properties.
| 2 w=sn z

-K+iK' K+iK’

w&w

7

1

!
] \\‘
we \
Wi \

.\
-1
(

= - —_—

Fic. 34.

Our point of departure is the conformal mapping of the half-plane
Im {w} > 0 onto a rectangle in the z-plane, where the points w = + 1,
w = £ (1/k) (0 <k < 1) are to correspond to the corners of the rectangle.
By the Schwarz-Christoffel formula (50) of Sec. 6, Chap. V, this mapping
is effected by the function

w “dw
Aav_wlzgl\m<algffl§§

In order to determine the position of the rectangle in the z-plane, we

observe that F(w) is real for real w and that F(—w) = —F(w). Itfollows
that one of the sides of the rectangle coincides with part of the real axis
and is situated symmetrically with respect to the origin. If we agree to
take in (13) that branch of the square root for which /1 = 1 and denote
the height and width of the rectangle by K’ and 2K, respectively, the
position of the rectangle will therefore be as indicated in Fig. 34a.

We now define the elliptic function w = sn z as the analytic function
for which sn’(0) = 1 and which maps the rectangle of Fig. 34a onto the
upper half-plane indicated in Fig. 34b in such a way that the points
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. P ~ I.Nf.mw_ Lﬁ 0 _ N. K + iK' _ iK'
(14) _ : : , :

N __IH_o__Hv_ | w
correspond to each other. We might also have defined w = sn z as the
inverse of the function z = F(w) introduced in (13). Obviously, the
function w = sn z depends not only on z but also on the parameter k. It
is, however, customary to regard one of the quantities

. .\
(15) r =K

(16) . g=em=c K

rather than F, as the parameter on which sn z depends. If it is desired to
indicate the parameter, the symbol sn z is replaced by sn(z,7) or sn(z,q).
We shall see later that & is uniquely determined if either r or ¢ are given.

The symbol sn z is used because of certain analogies between this func-
tion and the trigonometric function sin z. It is also easy to see that the -
function sin z corresponds to a degenerate case of the function sn z. This
follows either by letting k¥ — 0 in (13) or by observing that, for ¢ — 0, the
rectangle of Fig. 34a¢ becomes an infinite half-strip. This analogy is
carried further by the definition

(17) . enz=+/T—s0’z2 cn0=1,
of the elliptic function cn z. Another elliptic function is Eﬁomzommd%.
18 dnz=+/T=ksnfz, dn0 = 1.

The functions sn 2, c¢n z, dn z are referred to as the Jacobian elliptic func-
tions. We add that the name “elliptic functions” is due to the fact that

‘the integral (13) was first encountered in connection with the problem of

finding the length of an arc of an ellipse. This led to the appellation
“elliptic integrals” for & class of integrals related to (13) and, subse-
quently, to the name “elliptic functions” for the functions inverse to
these integrals if the latter are regarded as functions of their upper limits:

With the help of (13) and (14), both K and K’ can be expressed in terms
of k. We have . .

ot dt
(19) _ K |.ﬁ NI N.%v.

and

[* ds

1 V(I =1 — k%)

iK' =
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The latter integral can be brought into a more elegant form. If we make
the substitution

s = AH _ an&wvi“

where
(20) | ¥ =vI=,
we obtain by an elementary computation
1 dt
21 K = :
- |, ve=re=rm

It is interesting to observe that the functional dependence of K with
respect to & is the same as that of K’ with respect to &’ , Where &’ is defined
in (20), that is, K'(k) = K(+/1 — k?).

The fundamental property of the elliptic functions is their double
periodicity, that is, the fact that such a function has two different periods
which are not integral multiples of the same number. In the case of the
function sn 2, these periods are 4K and'2;K’. In other words, the func-
tion sn z satisfies the identities

sn(z + 4K) = sn g,
(22) sn(z + 2(K') = sn 2.

(22) can be proved by suitable application of the symmetry principle.
Since w = sn 2 maps the rectangle R of Fig. 85 onto the half-plane of Fig.
34b, sn z can be continued beyond the boundary of the rectangle by sym-
metry. Inverting the rectangle with respect to its upper side, we find
that w = sn 2z maps the rectangle B, of Fig. 35 onto the lower half-plane.
Inverting, in turn, the rectangle R, with respect to its upper side, we see
that the rectangle R; of Fig. 35 is again mapped by w = sn z onto the
upper half-plane. If 2; and z, denote the points into which a point z of R
is sucressively carried by these inversions, it is clear that z, = 2 + 2K,
Since the image point of 2 is returned to its original position by the two
inversions with respect to the real axis, it follows from the symmetry
principle that sn(z + 2K’) = sn 2. This proves the second identity
(22). 'The proof of the first inequality (22) follows in the same way by
considering the inversions R; and R, of R (see Fig. 35) and is left as an -
exercise to the reader.

Next, we show that the function w = sn z is single-valued at all finite
points of the z-plane. To this end, we divide the #z-plane into a network of
congruent rectangles by means of the lines Re {2} = K @n+1),n=0,
1, 2, . .. and Im {2} = mK’, m = 0, £1, £2, . ... Al these
rectangles can be obtained from the rectangle R of Fig. 35 by a suitable:
number of inversions. Although there are many different possibilities to
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get from R to a given rectangle R in this fashion, a moment’s refléction
shows that the number of inversions connecting R and R’ is always even
if it is even for one particular chain of inversions, or else it is always odd if
it is odd for one particular chain of inversions. On the other _p.mﬁ@,, an
even number of inversions of a point w with respect to the real axis in the
w-plane returns the point to its original position, while an odd number n.n
such inversions carries the point w into the point . Henece, the analytic
continuation of w = sn z by means of the symmetry principle leads to a
uniquely determined value of sn z st each point of Spm. z-plane, Homvu&mmm
of the path along which sn z has been continued. This proves the above
statement.

3K’
\ L]
22
R,
9K
%
\\N A/
By
S B
\ \ ﬁ\ Ll -
N ¥4 23 . 24
‘R -~ Ry R,
Gy N
K 0 K 3K 5K
F1e. 35. .

In view of the double periodicity (22), it is sufficient to Wwoi.apm values

" which the function w = sn 2 takes in a rectangle of sides 4K and 2K’,

which are parallel to the z-axis and the y-axis, Hommmoﬁa.\mgﬂ ._HE.m. wm
entirely analogous to the case of the function w = sin z in which 9. is
sufficient to know the values of the function in a strip of width 2« which
“is parallel to the y-axis; the other values of w = sin z are ﬂrmb. obtained
from the relation sin (z + 2mn) =sinz, n = +1, £2, ... .° ﬁ:.w .mm..m
that, in order to cover the entire z-plane by the homologues of the original
period rectangle, it is necessary to add to the interior of the rectangle two
of its sides; clearly, the latter have to be adjacent to each other. In the
case of the function w = sn 2, a convenient period rectangle will be the
rectangle —K < Re {z} < 3K, 0 < Im {2} < 2K".
The period rectangle of w = sn z consists of four homologues of the
rectangle R in Fig. 35. As shown before, two of these rectangles are each
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mapped onto the half-plane Im {w} > 0 and the other two are mapped
onto the half-plane Im {w} < 0. It follows that the function w = sn 2
maps the period rectangle onto a domain which covers the entire w-plane
exactly twice. In other words, if w, s an arbitrary complex number, then
the equation sn z = wy has exactly two solutions in_each period rectangle.
This is also true of the equation sn z = oo, By (14), sn iK' = ». If
we invert the rectangle R in Fig. 35 with respect to its right side, the point
z = ¢K’ is carried into the point 2 = 2K + ¢K’. Since the corresponding
inversion with respect to the real axis in the w-plane leaves the point
w = o unchanged, it follows that sn(2K 4+ iK’) = «. The singularities
of snzatz = iK' and z = 2K + 7K’ must be simple poles. This follows
either by observing that the mapping at these points is conformal, or
else by showing that otherwise there would exist values near w = o«
which are taken in the period rectangle more than twice. Hence, the
only singularities of w = sn'z in our period rectangle are two simple poles
at the points z = K’ and z = 2K + iK',

Since, in view of (22), the values of the function w = sn z in the entire
#z-plane are periodic repetitions of its values in a single period rectangle, it

follows that the only finite singularities of w = sn z are simple poles at the
points

(23) 2z =2nK + (2m + 1)iK’, n=0+1,+2, ...,
m=0,£1, 2, .. ..

The zeros of w = sn 2 are found in a similar fashion. By (14),sn0 = 0.
One inversion of the rectangle R in Fig. 35 with respect to its right side
shows that also sn 2K = 0. These are all the zeros in the period rectan-
gle. It follows therefore from (22) that the only zeros of w.= sn z are
simple zeros at the points

(24) 2z = 2nK 4+ 2miK’, n=0 +1, +2

) s e v

m =0, 1, £2, ...,

We shall use (23) and (24) in order to set up an infinite product for the
function w = sn 2. However, before we do so, we insert a few remarks
concerning infinite products. An infinite product

P= [0 +a), ans=-—1,

n=1

is defined as the limit of the products

y=1

Po=(+a)l+a) - Q+a)=I] 1+a)
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for n— o, If this limit exists and 1s different mwou.b zero, .we say- thai
the infinite product converges. The product is said to converge abso-
lutely, if the product

©

p= I 0+ la

n=1

converges. An absolutely convergent product. converges also in the
usual sense. To show that this is true, write

pn= 11 @+ la))
=1

and consider the expressions

Po—Poi=04a) - (1+ ti)tn
and C :

Po = Pa1 = 1+ Jai]) © - - (1 + |@sa])@a].
We obviously have .
’ _.Ws - ‘wslu_ m Pn — Nw.:IH.
Since lm s H P, M (pn — Da—1) converges. Hence, the same is true of

n—r 9

M |Pa — Pn_s| and therefore also of M (Pn — Pyny). Butthe conivergence

n .
of the latter series is identical with the existence of lim P,.

n=—> @

Tt remains to be shown that this EE& cannot be zero, Beforewe do so,
we first prove that the infinite product [| (1' + |a.|) and the infinite series

M |@a| oobﬁﬁmm and diverge dommerma.. Obviously,

las|*

2!

ool = 1+ o + 54 - - 214wl

On the other hand, we have o
el el S A+ O e,

ag is seen by multiplying out the product. WmﬁomM

Yl <M a+lah<e™

v=1 v=1 .

‘n

which shows that for the convergence of [T (@ + |aa)) it is necessary and

n
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sufficient that the series M |aa] oo.uﬁwuw@ ‘To show now that lim P, 5 0,

n
we remark that since M |a.| converges and 1 + a, — 1, the series

2%
14+ a,

s also convergent. Hence, in view of the result just proved, the product

(S R
1 Hl_lQé n .I‘Nv:

p=]1 : AH I_l Qwv
y=1
tends to a finite limit. Therefore, lim P, s 0.

n—>

We now consider the infinite product

o I a=-g= I a-gmy
(25) &) = ¢ —2=0 m=l )

I1 @ =gmi ] (- gy
m=0 m=0

where .

(26) = FF

and ¢ is defined by (16). The product (25) converges absolutely at all
points of the z-plane at which none of the terms in the numerator and
denominator of (25) vanishes. Indeed, itfollows from (16) that0 < ¢ < 1.

Hence, the series M g™ converges; in view of the criterion u.cm#mm,\&ovmm,

the four products in (25) will therefore converge absolutely. We add
that, by taking logarithms, an infinite product of the type
Q=1 a—g
m=1

can be transformed into the series

log @ = M Hom 1 - g,

me]

if the proper values of the logarithm are taken on both sides. The series
will obviously converge if ultimately, that is, for large enough m, we take
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the value of log (1 — ¢™¢) which reduces to 0 if (1 — ¢»¢) — 1. Since
in any closed domain in which ¢"f £ 1, m = 1, 2, . . ., the series is
converging, it converges there uniformly. ~ As shown in Seec. 3, Chap. III,
it therefore represents there a regular analytic function of {. Taking
exponentials, we find that the same is true of Q@ = Q(). In view of (26),
it therefore follows that (25) is an analytic function of z which is regular
atall finite points of the z-plane at which none of the factors in the denomi-
nator vanish. Obviously, all finite singularities of the function (25) are
poles which are caused by. the zeros of the denominator.

We now determine the zeros and poles of the function (25). In view of
(16) and (26), the zeros coincide with those points z at which either

27) e K K =1, m=0,1,2, sty
or .

' 2rmK’ | iz . '
(27" e K K = 1, m = “T 2, ....

Taking logarithms and observing the indeterminacy of the logarithmic
funetion, we find that the zeros of (25) coincide with the points z for which.

o :
|.N=.. M.N Iiﬂm"&s&.ﬁc 3“0‘ 1, Mu e, n =0, .,_I.,.“_J HNV ’
or .

, .
|Mq_.| NQM.N..TWM\M&"N%%@» SH.H_.VMV...‘*@"O“HHVVTN“. .

Owiosmq, the last two relations are equivalent to
z2=2nK 4+ 2mK', n=0,%1,42 ...,m=0, £1, +£2, ... .

A comparison with (24) shows that these are precisely the zeros of sn z.

- We add that these zeros of the function (25) are all simple ;/this is an

immediate consequence of the fact that the derivatives of &H,m, left-hand
sides of (27) do not vanish for any finite value of z.  The poles of (25) are
situated at the points z for which _ v
_w(@m DK _xiz . -
e K E=1 m=0,12...
or

_r@m+ DK’

+52 -
e K K =1, m=20,1,2 ....

:

As before, we find that these are the points

z=2nK + 2m 4+ 1K', n =0, £1, £2, . .. .
‘m =0, HH,..“ +2 ...
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Since all these are simple zeros of the denominator, it follows that the
only finite singularities of the function f(2) in (25) are simple poles whose
location is the same as that of the simple poles (23) of sn 2.
We next show that the function (25) is a doubly periodic function whose
periods are 4K and 2%K’. In view of
FEETE _ IR o IE,
the quantity ¢ defined in (26) does not change if 2 is replaced by z + 4K.
Hence, the function (25) has the period 4K. If z is replaced by z + 2iK’,
we have
3 J 2 K’ iz
%ﬁmﬁiwsmv _ a.m%malﬂw - m@m,.lﬁ
where g is defined by (16). As a result, the quantity ¢ in (25) has now to
be replaced by ¢g¢. We obtain

I @ — ggem—ve2 T a- gXm D)
fe + 2K) = qr m=0— ol

IT &= [] (0 - gmsgry
m=0 m=0

— (1= )0 —gd _

IO T - e 7@

Consider now the function
sn 2

9@ = 7oy

where f(z) is the function defined in (25). Since the poles and zeros of
sn z coincide with the poles and zeros, respectively, of f(z), the function-
g(2) is regular at all finite points of the z-plane. In view of the fact that

both sn z and f(z) have the periods 4K and %K’ , it further follows that -

g(2) likewise has these periods. The values of g(z) throughout the
z-plane are therefore repetitions of the values taken in a single period
rectangle. Since g(2) is regular in the closure of such a rectangle, we have
there |g(z)| < M, where M is a suitable constant. Hence, the inequality
lg(2)] < M must hold in the entire z-plane. In view of Liouville’s
theorem (Sec. 7, Chap. III), this means that g(2) reduces to a constant,
say C.
We have thus shown that

28) - sn z = Cf(2),

where f(2) is defined in (25). To determine the constant €. we use the

ecd
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fact that, by (14),

sn K =1, sn(K +iK') = k.

In these cases, the quantity ¢ defined in (26) takes the values

and

wi K ) l.s:lu.ml‘ .

FREHE) _ B o Z
respectively. Inserting these values in (25) and using (28) we o_ogwn..
after some manipulation,.

. . : . = 1+ 2n \ 2
Awwv. A 1= M:NMH_AH.+.%WIMV
n=1
and .v ) :
1_ iC : 1+ g2t N.
E 24/q T+ ¢
n=1
Eliminating C from these two identities, we have
, 14+ ¢n
(30) A k? = 16¢ E Aqlmuﬂv ;
n=1 '

whence Ct? = q. Since q > ou it follows from (29) #hat <C > 0.
Hence, finally A .

31) : ¢ = |,s.. % _

B .

| where both radicals take their positive values. In view of Awmv..y_. (28), and

(81), we thus have proved the expansion

m (1 =g [ @ —¢*?)

. »I
(32) sn(z;g) = |‘m%w Muo .. gMH \
| [T @ =g+ 1 @ - gy

n=0 : a=0 .

where { is defined by (26) and k, the modulus of the function sn z, is

expressed in terms of g by means of (30). = .
Although so far our considerations have been confined to the case in

which one of the periods of the function sn z is real and the other is pure
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imaginary, our results are of much ‘wider application.. The infinite
product (32) converges for all values of ¢ for which lgl < 1. Hence, if
w1 and w2 are two complex numbers such that | 4

(33) Re E >0

wWa
and, in analogy to (16) and (26), ¢ and ¢ are defined by
@) = TE LW

the product (32) will converge for this value of ¢. The reader will also
confirm without difficulty that this function snz — sn(z;¢) has the
‘periods 2w; and 2w,, that is, it satisfies the relations sn(z 4+ 2w1) = sn 2,
Sn(z + 2wsy) = snz. The period rectangle will now become a period
parallelogram which, because of (33), cannot degenerate into a linear
segment. For |g| < 1, the expression (32) is also a regular analytic func-
tion of the variable ¢. By the principle of permanence (Sec. 5, Chap. IIT)
all analytic identities which were shown to hold in the ecase 0 <g<1
will therefore persist for all g such that |g] < 1. We thus have the follow-
ing more general result. . .

The analytic function sn(z;q) of (32), where w1, w3 satisfy (33) and g and ¢ v

@3&@@@&%Aw@vgﬁwmsm&o&mweHg& .we&“@age%mmﬁ.sHmimh&%
the function z = F(w) defined in (13). . :

Since these general functions sn (z;g) do not share the simple conformal
mapping properties which are characteristic of the case 0 < ¢ <1, we
shall not pursue their study any further.

Infinite product expansions for the functions cn z and dn 2 defined in-

(17) and (18), respectively, can be obtained by suitable modification of
the procedure employed in the casé of sn z. In view of (17), the poles of-
cn z coincide with those of sn 2, while its zeros are situated at the points
at whichsnz = +1. By (14), these are the points

@5) 2= K+ 4Kn + 2iK'm, n,m =0, +1, +2;

e e

It should be noted that the equation sn?z — 1 = @ has double roots at
these points, or, what amounts to the same thing, that the derivative of
sn 2z vanishes there. This is an immediate consequence of the fact (see
Fig. 34) that w = sn 2z transforms right angles whose vertices are at these
points into the angle =. Hence, V1 —sn’z is regular at these points
and cn z is single-valued for all 2. Using the fact that cn 2 has simple
zeros at the points (35) and simple poles at the points (23), and employing
the same procedure as in the case of the function sn 2, we finally arrive,

after some manipulation, at the infinite product expansion
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I+ I a+ g

(36) cn(zy) = Q&N\w &) s u_o nl : :
. ; : : .Q _ nwaiwlnv —‘— AH — Q§+de
n=0 . a=0 .

The function dn z of (18) has again the same poles as sn z, while its zeros
coincide with the points at which sn 2 = £k~ By (14), these are the
points : : .

z=02n+ DK + @2m 4+ 1)K’.

- This leads to the product expansion

: : A 4+ g2+i-2) :AH + g2nHir?)
[T @ — g9 I @ =gy

n=0 n=0

n=0

Details of the derivation of (36) and (37) are left as an exercise to the
reader. .

Qﬂwgﬁ objective is to derive a relation between the functions s AN.MS
and sh(z;g?). Our point of departure is again the conformal mapping of
Fig. 34, by means of which the function sn(z;q) was originally defined.

) 2iK’ o w=sn (zq)

Fia. 36.

Applying the symmetry principle to an ‘inversion of the rectangle in Fig.
34a with respect to its upper side, we find that the ?ﬁoﬁow w = sn(z;9)
maps the rectangle of Fig. 36a onto the full w-plane which is furnished
with a slit as indicated in Fig. 36b. Consider now the function sn az
(where « is such that sn «K = 1) which maps ﬁ.p.m rectangle in Fig. 36a
anto the upper half-plane. Since the sides of the rectangle are 2K and



202 - : CONFORMAL MAPPING [Crar. VI

2K, respectively, the parameter ¢; belonging to this function is, by (16),
. ' MN\
1 =e¢ XK =gq2

It follows that the function w1 = sn(ez;q*) maps the rectangle of Fig. 36a
onto the upper half-plane. Since, as the reader will easily confirm, the
mapping
_ 2 Qg.w
w = Nn. WNITI.SHN.. R > OM

transforms the upper half-plane Im {w;} > 0 into the slit domain of
Fig. 36b, we find that the function

_ 2 pBsn(az;g?)
8 Y TR E T sni(ezigd)

maps the rectangle of Fig. 36a onto the slit domain of Fig. 36b. Asshown

above, the same conformal mappingiseffected by the function w = sn (239).

By the results of Sec. 4, Chap. V, two analytic functions which perform
the same conformal mapping of a simply-connected domain are identical
if their values agree in three boundary points. Now both the function

(38) and w = sn(z;g) transform z = 0 into w = 0. If the constant 8 in

(38) is so chosen that

2
(39) ﬂ.l k,

it follows further that the mapping (38) transforms the points.z = +K
into the points , .
_2 _Bsn(kaKi) _ 2 B _
YRR FmiEak - FETFR T AL

Since also sn(+ K ;q) = + 1, the two functions chﬁ apmummowmdm Em.um.&o&. .

We bave thus proved the identity

sn(z) — 2_ Bsn(az;q?)
(40) sn(z;q) = % BT & sl AQmwmw% ‘
where $ is given by (39). The parameter k is the modulus of the elliptic
function sn(z;g).. To distinguish % from the modulus of the function
sn(z;q?), we shall denote the former by k(g) and the latter by k(g?). In
terms of this notation, the identity (30) reads : A

(1) @ =160 | AWM%JV :
n=1

. The constant 8 in (40) can be simply expressed in terms of the Bo@&ﬁ&
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k(g%). Sincesn[a(K + 2K"); ¢% = k(¢g?) and
4 sn(K + 2K';q) = sn(K;q) = 1, .
it follows from (40) that .
__ 2B8k(h)
(42) k(g) = ﬂ&%l@& :
Now the equation :

T+a T+y

W — o) — ) =0

and its only two solutions are therefore © = y and zy = 1. Comparing
(39) and (42), we thus find that we have either gk(g?) = 8 or 8%(¢?) = 1.

is identical with

Since the first possibility is absurd, it follows that

g1
_ . V'k(g?)
‘Hence, in view of (39), (40), and the fact that sn’(0) = 1,
o 0 2/TlaE
) b = YD,

@) Gy = OISR, e

By combining the mapping of Fig. 34 with some of the transformations

discussed in the preceding sections, a number of important conformal

(a)
Fia. 37,

mappings can be obtained. As an example, we consider the conformal
mapping of the circular ring of Fig. 37a onto the unit circle furnished with
a symmetrical slit as indicated in Fig. 37b. It should be-noted that the
existence of such a mapping does not follow from the Riemann mapping
theorem, since the domains are doubly-connected. It will be shown in-




'
¢

¢
)
‘
\
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Chap. VII that any doubly-connected domain can be mapped onto a
circular ring, where the ratio of the radii of the ring is completely deter-
mined by the original domain. In our case, this means that, given the
length L in Fig. 37b, the radius p in Fig. 37a is completely determined, and
vice versa.

Applying the symmetry principle to the circle |z = 1, we find that the
function w = f(z) which effects the mapping of Fig. 37 will also map the
circular ring p < 2| < p~! onto the entire w-plane which is furnished with
theslits —o <w<—L—1, —L<w< L, L—1<w< o. Both these
domains are symmetrical with respect to the real axis in their respective
planes. If we can find a function which maps the upper half of the circu-
lar ring p < [¢| < p~! onto the upper half-plane in such a way that the
points .

2 _ P _ lb_nl_lbl
(45) -

wlr| -] -1

correspond to each other, it will therefore follow from the symmetry
principle that this function is identical with w = f(). We now use the
fact that the transformation z = 4pe—it maps the rectangle —ir <
Re {¢} <4m, 0 <Im {} < —2log p onto the upper half of the circular
ring p < |2| < p~!in such a way that the points

w_?_a?

3m — 2{log p _ ~3r — 2 log p
(46)

2 _ p w = v pt _ —pt
correspond to each other. (see Fig. 32, Sec. 2). Hence, the function

w = f(ipe~¥) maps the rectangle in question onto the upper half-plane.
Since, in view of (45) and (46), we have the correspondence -

¢ _wilwa wal&iomb_ —4m — 2ilog p
I Ype®) | 1| —1| 170 | -1
it follows from (14) that
2K

L7f(tpe™®) = sn — g,

where the constants K and K’ associated with the function sn ¢ satisfy

g 4 v
(47) 74 = - ql_..u.om o,
and where the modulus of the function sn is
(48) k=12
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Since, in view of (16) and (47); the parameter ¢ associated with sn 201Kt
is p*, we thus find that the analytic function effecting the conformal
mapping of Fig. 37 is of the form . . ,

(49) w = 16) = VEGY sn (2 tog £ 4 K 7).

ko

We also note that, by (41) and (48), the functional dependence of the
length L in Fig. 37b with respect to the radius is-given by

8 . 3. N
0 -2 [1 (555
n=1 .

As another example of a conformal mapping which can be carried out by
means of elliptic functions, we consider the function w = f(2) which maps
the interior of an ellipse onto the unit circle. In order to avoid unneces-
sary parameters, we assume that the foei of the ellipse are situated at the
points +1. If we further suppose—as we may, by the Riemann mapping
theorem—that f(0) = 0, f’(0) > 0 then, for reasons of symmetry, w = f(z)
will map the upper half of the ellipse onto the upper half of the unit circle.’
We now recall from Sec. 2 that the function z = sin ¢ maps the rectangle
—3r < Re {{} < 4,0 <Im {{} < conto the upper half of an ellipse of
semiaxes cosh ¢ and sinh ¢. " If the semiaxes of our ellipse are ¢ = cosh ¢,
b = sinh ¢, it follows therefore that w = f(sin ) maps this rectangle onto
the upper half of the unit circle jw| < 1. But this half circle is trans-
formed by the mapping A : . .

o 20
. A IR
onto the upper half-plane Im {w:} >0. Hence, the function.
2f(sin ¢) .

w, =

- 14+ Emy)

will map the rectangle —3r < Re {{} < 4=, 0 < Im {¢} < ¢ onto the
upper half-plane. If f(1) = «, the reader will confirm that the corners of

the rectangle correspond to the points . -
HE R I e
v 2a 2a
“ife| T¥e ! -1

In view of (14), it follows therefore that

(50) wy = 2(ing) 2« 2K

= {Ffeny 1+ 7 5
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where the constants K and K’ associated with the function sn m@ﬂm@
K" = 2¢K. By (16), we have ¢ = e, and the modulus k = k(e=2) is

’ 2a
—20) = T,
e = e
In view of (43), it follows that
=4/ k(e=%).

If we compare (50) with (44) and use (43), we find that

fsin §) = /k(e~%) sn Amm G e an K = K(e*).

If we recall that the semiaxes of the ellipse were @ =
we thus obtain the following result.
The interior of the ellipse

coshcandb = sinhe,

a? —b* =1

nﬁw 2
%l_llww\nm"u.u "al_iswm\

is mapped onto the unit circle [w| < 1 by the function

: L T K a—b 2
51 w = f(2) = \/k —— gin—1! = .
(51) 1) z\ (0) muA sin~1 z; uv p Aa._. @v
In this mapping, the foci of the ellipse correspond to the points

w = & v/k(p)-

EXERCISES )
1. Show that the elliptic functions sn 2, en %, dn z have the differentiation formulas

d
NmmH_.N

d

—cn 2 —snzdn z
&n ?

en zdn z,

lmﬁnﬂlw»mw 3
s - zen z

2. Show that w = sn z satisfies the differential equation
= - w1 ~ k),

and Qo&mmm similar differential equations for the functions w
8. With the help of QEY (87), and the fact that dn 0 =

=cnzand w = dn 2.
1, prove the identity

[Ta+a— ] @ —g=s =160 [ @+, 1o <.

n=1 n=1 ’ n=1
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4. Show 5»& the function w = cn 2z maps the H.mogum_m —K <Re {2} < N.
0 <Im {2} < K’ onto the right half-plane Re {w} > 0 which has been cut along

gmmummammmBmaoASMH.
6. Show that the function
W = A \H —~'CI %
1+enz,
maps the rectangle —K < Re {z}
jw| < 1.
6. Show that the mgoﬁob

<K, -K' < Fﬁ: K’ onto the unit circle

w = §n All tan—1 nv

maps the unit circle 2] < 1 onto a m,oBmE D with the following properties: D covers
the entire w-plane (including w = ) an infinity of times, with the exception of the
linear segments —k~! < w < —1and 1 < w < %* which are not covered at all; D has
no branch points and it has no boundary points other than the points of the above
linear segments.

7. If-w = f(2,0) denotes the function effecting the conformal mapping of Fig. 37,
use the fact—following from the symmetry principle—that w = f(z,0) maps the
circular ring p < |2/ < p72 onto the full w-plane with the slits —ew < w < —LY,
~-L<w<LIL*<w A e, in order to deduce the relations

- 2 fz0%
| TE0) = £0) T+ fites®
and “ AL (%)
L*6) = TGy

Using the form (49) of the mapping function f(z,0), show that these two relations are

.Eodﬁc& with the identities (44) and (43) respectively.

8. Show that the function w = f(z,0) of the preceding exercise maps the circular )
ring'p? < || < 1 onto a domain which consists of two replicas of the unit circle lw| <1

and has two EEEa branch points at w = +L(p).
9. If f(z,p) is the function of Exercise 7, show that the transformation

147 ek} v

1—27°

HIM H.._uu“bv. ~

1 ~¢

maps the z°plane with two equally large circular holes indicated in Fig. wma onto the

Rl

7 17
§\‘§%\&§ 2z

Fie. 38.
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w-plane with two equal collinear slits indicated in Fig. 38b, where
_ 14, _ 2 = 1= L)
Q\l.u.l.bn. ﬂuﬂth»v @lﬂg

10. Using the fact that the function (13) yields the conformal mapping of Fig. 34,
prove the identity

\ﬂ\.s pdp de
oo)\HIMb»QOmM®+b$)\H I.Nb»w»QOmwauTb:&

11. If K = K, it follows from (19), (20}, and (21) that & = 2%, Deduce that
k(e=*) = 27% and show further, with the help of (48), that

k(e = 22 (V3 — 1).
12. Show that the transformation v
w = sn2z

= 2KK'.

Bm_wmﬂVmumogum_mkoaﬁwAN&IN\AHB*NMA N.,m\ou&o_uwa?:s.uﬂpbm
with the slits — fw<0,1<wxL =, .
13. Show that the series

Bilerg) = 2 M (—1)ng»* sin @n + 1)z
n=0
and

24(z9) =1 4+ 2 M (—1)ngn* cos 2ne, lgl <1,

n=1 .
converge uniformly in any closed finite domain and thus are entire functions of 2.
Show further that

H(z + 7)) = —%1(2), Sz + ) = d4(2),

iz + 7r) = —glem%=9,(),
Bz + 77) = —qle"r,(2),
(g = e77) and that therefore the function
iy _ %i(?)
NuAnV. )

m@ﬁmmmm. the relations P(z + #r) = P(2), P(z + =) = —P(2) and thus is a doubly
periodic function of z with the periods 2r and «r. Hint: Express the trigonométric

functions in the definitions of #,-and ¢4 by means of exponential functions and replace

the summations from 0 to = by summations from — e to . .
14. If C is the boundary of the parallelogram with the corners 20, 20 +m, 20 +
7 + a7, 20 + o7 and #(z) denotes either of the functions #:(2), 94(z), show that

1 ¥ (2) dz = 1 fzotr _H%Rmv _ ¥ +3.g dz

27t Jo 3() 2t Jao 3@ &+
1 z0+ur [ §/(z) ¥z + ) _ IHI zobx _
= Bt e T@ ..%jL%nma.b %idz = 1.

ms.ﬁ..dmo;m:pcmmm wamo&.o#%: omgm?uoﬁoﬂ:%@.,mmldom.F?m@noao&b@
exercige, .
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' 15. Show that
P

H(z,9) = —ie %9, A& + m%mvw

and deduce from the result of the. preceding exercise that the only zeros and poles
of the doubly periodie function P(z) of meuommw.uw in a period parallelogram are
situated at the points congruent to z = 0, r and 2z = 47, drr + =, respectively.

16. Show that the zeros and poles of the function P(z) coincide with those of
sn (2K /r)z and that both functions have the same periods, and conclude that
PE) =4mE,
where 4 is a constant. '

17. Using the fact that sn K = 1, sn(K + iK’) = k-, show that the value of
the constant A in the preceding exercise is .

o
2 M ginthe
= 7n=0

1+2 M i

=1

. 4

and that .

o 14

M n:?+uv

k? = 16gf —2=0 ___|.

L0

142 M%“

‘n=1

Hint: Use the identity of Exercise 15. Remark: Because of the extremely rapid con-

vergence of the series involved, this expression is used for the practical computation
of k2 :

4. Domains wogm.mm by Arcs of Confocal Conics. In this m..moﬁoup we

-consider the conformal mapping of domains whose boundaries consist of a

number of confocal elliptic or hyperbolic arcs, where the commbon foci of
these arcs may be assumed to be situated at the points + 1’ without
restricting the generality of our considerations. "Examples of such
domains are the interior or exterior of an ellipse, the interior or exterior

of one branch of a hyperbola, the entire plane slit along an elliptic or-
hyperbolic arc, a domain bounded by an elliptic arc and a hyperbolic are

intersecting it at right angles, and so forth. .
' Let now w = f(2) be the analytic function which maps the unit circle

‘|2| < 1 onto the domain D which is bounded by arcs of confocal conics

whose common foci are at w = 1. Since, as shown in Seec. 2, the map-
ping { = sin~! w -transforms all ellipses and hyperbolas with the foci
w = 1 into linear segments parallel to the real and imaginary axes in
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4. Let D be that part of an ellipse of foci + 1 which is obtained by intersecting
the ellipse with both branches of a hyperbola of foci + 1, and which contains the
origin, Show that the unit cirele |2| < 1 is transformed into this domain D by the

function ) d
. z N
w = f(z) = gin T% »\ﬂj%

where [a| = 1 and « is neither real nor pure imaginary. Show also that this is
equivalent to

where CC’ = & and the modulus of the elliptic function sn is k = a2,

5. If, in the mappings of this section, the fundamental domain is taken to be the
upper half-plane Im {2z} > 0 instead of the unit circle |2| < 1, show that (52) and
(57) have to be replaced by the conditions

r2 u
$w =real, z = real, ,
and . , ,
79 H
f .XMV = Hmmr. = real, m
respectively. -
6. Let w = f(2) be regular on a part L of the real axis, and let f(2) satisfy there the 4
condition : ’
4 .
@ > 0.

[fG) — allf) — bllf(2) — cl[f(e) — d]

Show that w = f(z) maps L onto an arc C with the following geometric property:
If wis on C and B; and g, are the lines bisecting the angles between the lines connecting
w with a, b and b, ¢, respectively, then the tangent to C at w makes equal angles with
Brand B2

6. The Schwarzian s-functions. In Sec. 7, Chap. V, we discussed the -
analytic functions which map the upper half-plane onto a triangle whose
sides are circular arcs. These functions are known by the name of the
Schwarzian s-functions or the Schwarzian triangle functions. In the o
present section we shall be concerned with a further study of these func-
tions, where the emphasis will be on the inverse to a given s-function
rather than on the function itself. The reasons for doing so are similar to
those for considering the elliptic function sn 2z rather than the elliptic
integral (13) of which it is the inverse. While the integral (13) is an
infinitely many-valued function, depending on the integration path con-
necting 0 and w, its inverse w = sn ¢z is single-valued in its entire domain
of existence, and this single-valuedness greatly facilitates all operations
involving these functions. The s-functions are also infinitely many-
valued. While it is not always true that the inverse of such a function is - m
single-valued, there are important special cases in which the inverse has
this property. It is to these cases that we shall devote our particular o

attention. . \

= o sn[C’ sin~! w), . .

-
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Taking account of the fact that we are now interested in the inverse of -

the s-function, we assume in this section that the curvilinear triangle with
the angles ra, 78, wy is situated in the z-plane. In this notation, the fune-

tion z = s(w) maps the upper half-plane Tm {w} > 0 onto the curvilinear
triangle. The inverse to z = s(w) will be denoted by w = S(z) or, if it is

desired to mention the angles of the triangle, by w = 8 (a,8,v2). In

this definition, the function w = S(2) is determined only up to an arbi-

trary linear transformation of the z-plane onto itself. To make things

definite, we shall, by a suitable linear substitation, transform the triangle

into such a position that the vertex with the angle r« is at the origin, while-
the two circular arcs meeting there become linear segments. Obviously,

this is always possible if the angle o is different from zero. Indeed, let

C1and Cs be the two circles which meet at z = 4 under the angle ra 5= 0.

Since a 5% 0, €1 and C, intersect
also at another point, say B. The
linear substitution

«_&8—A
i

transforms all circles through B into
straight lines; in particular, the cir-
cles C; and C; are transformed. into
two straight lines through the origin
(both C; and C, pass through A4).
By an additional rotation, we may
make one of these lines, say the line .
connecting z = 0with the vertex at the angle vy, coincide with the real axis.

In the following, we shall confine ‘ourselves to triangles for which

m,.H.m. 40.

- a-+ B+ v <1, that is, to triangles the sum of whose angles is less than

2x. Any such triangle has an orthogonal circle, that is, a circle which
intersects the three circles making up the triangle at right angles. To
show this, we bring the triangle into the position just mentioned and we
observe that any circle about the origin is obviously orthogonal to the two
rectilinear sides of the triangle. If T denotes the cirele ‘which forms the
third side of the triangle, it follows from elementary considerations that -
the origin is in the exterior of I'if @ + 8 + v < 1. Hence, it is possible
to draw a tangent from the origin to ' (see Fig. 40). If P denotes the
point of contact of this tangent, then the circle C about the origin which
passes through P will obviously be the desired orthogonal cirele. . It is
also clear that the triangle is entirely contained in the interior of the

orthogonal circle. If one of the angles 73, w7y is zero, then the correspond-

ing vertex must be situated on the orthogonal circle. Indeed, the circle
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about the origin which passes through the vertex is orthogonal to one of
the sides of the triangle meeting there; since the angle between the sides
is 0, this circle is also orthogonal to the other side. If all three angles are
zero, a case to be discussed in detail in the following section, all three
vertices of the triangle are situated on the orthogonal circle.

We are mainly interested in those cases in which the functions

w = 8(a,8,77) .
are single-valued functions of the variable z. To find these cases, we
observe that w = S(z) maps two linear segments which meet at the origin
under the angle ma onto a part of the real axis. As shown in detail in
Sec. 6, Chap. V, this means that S(z) is of the form

i
(58) 8(z) = 228:(2), 81(0) = 0,

where S:(z) is regular at z = 0. But a power of z cannot be single-valued
in the neighborhood of the origin unless its exponent is an integer. In
view of a > 0, this integer must be positive. S(z) will therefore be
single-valued in the neighborhood of z = 0 if, and only if, « is the recipro-
cal of a positive integer. The same result is obtained for 8 and v by
observing that, by suitable linear transformations, each of the other two
vertices can be brought into the center of the orthogonal circle. Hence,
a necessary condition for w = S(z) to be single-valued is that «, 8, v be
reciprocals of positive integers.

To show that this condition is also sufficient, we observe that, in view
of the symmetry principle, all possible analytic continuations of w = § ()
to points outside the original triangle can be obtained by successive
inversions of the triangle in the z-plane and by corresponding inversions
of the half-plane Im {w} > 0 with respect to the real axis. Now an
inversion with respect to a circular arc transforms circles into circles;
moreover, it preserves angles, although it reverses their orientation.
Hence, any number of inversions of a circular triangle with respect to
various circular arcs will again lead to a circular triangle with the same

angles; if the-number of inversions is even, the orientation of the angles’

will be the same as in the original triangle, while the orientation will be
reversed if the number of inversions is odd. Since the corresponding
inversions in the w-plane are simple symmetries with respect to the real
axis, it follows that the boundaries of all these triangles are mapped onto
parts of the real axis. By the argument employed in the case of the
original triangle, we find therefore that S(z) will be single-valued near the
vertices of the inverted triangles if «, B, v are the reciprocals of positive
integers. On the other hand, these vertices are clearly the only possible
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singularities of w = S(2). If a, B, v are reciprocals of positive integers, it
follows from (58) that S(z) is regular at the vertices at which S(z) = 0, 1,
while S(2) has a pole of order 1/8 at the vertices at which S (@) = o, -
* Summing up our results, we thus find that for all possible analytic con-

 tinuations of S(z), that is, in the entire domain of existence of this func-

tion, S(z) has no singularities except poles of order 7% If we can show
that the domain of existence of S(z) is simply-connected, it will therefore
follow from the monodromy theorem (Sec. 5, Chap. III) that S(z) is
indeed single-valued. (The fact that the fuliction S(2) has poles does not
invalidate the reasoning leading to the proof of the monodromy theorem.)
To find the domain of existence of S(z) in the case a -+ B+v <1, we
depart from the observation made .above that the fundamental triangle
is situated within the orthogonal circle . Since an inversion preserves
the Bnmbmﬁcmmm of angles, it is-clear that the sides of an inverted triangle

- are orthogonal to the image of C yielded by the inversion. But this

image coincides with C, since an inversion with respect to a circular arc 4
transforms any circle orthogonal to 7 into itself. If we continue in this
fashion, it is therefore clear that all the triangles which are obtained from
the original triangle by successive inversions have the same -orthogonal
circle. . .

It follows that all these triangles are situated in the interior of the
orthogonal circle C. This shows that S(z) cannot be continued to points
outside C. Within C, however, every point can be reached by a sufficient
number of inversions. To see this, suppose that all possible successive
inversions have been carried out. At the boundary of the domain
covered by these triangles there can be no-circular ares of positive radius,
since otherwise it would be possible to enlarge the domain by another
inversion. It follows that the boundary of the domain is occupied by
limit points of circular arcs whose radii tend to zero. But all these arcs

are orthogonal to C,.and therefore the circles to which they belong must
intersect C. Since their radii tend to zero, the points of these ares.

necessarily converge to €. This shows that any point within C can be
reached by a sufficient number of inversions. Hence, in the case « + 8 +

v <1, the domain of definition of S(z) coincides with the interior of the ,

orthogonal circle. Since S(z) cannot be continued beyond the circum-
ference C of the orthogonal circle, C is a natural boundary of the function
S(z) as defined in Sec. 5, Chap. III. .

* As mentioned before, the function S(z) has no singularities but poles if
@, B, v are the reciprocals of positive integers. Since, fora + 8+ v < 1,
the domain of existence of S(z) is a circle, i.e., a simply-connected domain,

it follows from the monodromy theorem that S (2) is single-valued through- .

out its domain. of existence. We thus have the following result.
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I . ,

(59) Qn.&eﬁ ..mnmv euw“

where

(60) . w+m+wmr

and m, n, p are positive infegers, then the function w = S(a,B,v;2) 18 single-
valued in the interior of the orthogonal circle C of the fundamenital triangle.
S(2) cannot be continued beyond C.
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Fia. 41.

The geometric expression of the single-valuedness of the function S(z)
in these cases is the fact that the totality of the inversions of the funda-
mental triangle yields a simple covering of the interior of C. Figure 41
shows part of the triangular net obtained in the case m = 2, n = 7,
p = 3, where the shaded and white triangles correspond to the upper
and lower half-planes, respectively.

An inversion with respect to a circular arc preserves the magnitude of
an angle but inverts its orientation. Hence, an even number of inversions
preserves both the magnitude of an angle and its orientation, and it yields
therefore a conformal mapping. Since, moreover, an inversion trans-

. fa—z
AGNV 21 = ) A.H||.|@nwv~
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forms circles into circles, it follows from the results of Sec. 2, Chap. V, that
an. even number of inversions s equivalent to a linear transformation.

Since, in the w-plane, the corresponding inversions are simple symmetries

with respect to the real axis, an even number of inversions in the w-plane
will return us to our point of departure. -If the linear transformation
corresponding t0 an even number of inversions in the z-plane is of the form

_9z+b
qu.Illﬁm..T&w..

it follows therefore that the function w = 8(z) satisfies the functional
relation
- ofez b\ _

(61) s(zdt - 56,

&W@&.mmu the value of w = §(¢) is reproduced if the argument z is made sub-
ject to certain linear transformations. Functions with this property are
known as aﬁ&igﬁin functions. The various linear substitutions which
reproduce the value of an automorphic function form a group. Indeed,
if T'and T" denote two such substitutions, it follows from S(T%z) = S(z), -
S8(T'z) = S(z) that

S(TT'z) = S[T(T'2)] = 8(T"z) = S(2).

Moreover, if T is the substitution inverse to T, we have

8@) = S(T'T%) = MGTNV.

The group belonging to a given function S(z) can be constructed from
three fundamental substitutions. Since all analytic continuations of

S(z) beyond the boundary of the fundamental triangle are obtained by

inversions with respect to one of the sides of the triangle or by their com-

..Ebpﬁobm. it follows that any even number of inversions can be obtained

by a suitable combination of the three linear transformations equivalent

to the consecutive performance of two of the three fundamental iriversions.

The group can therefore be generated by three suitable substitutions (and,

of course, the inverses of the latter). - Every inversion with respect to one .
of the sides of a triangle leaves the orthogonal circle invariant, and the

same is therefore true of the linear substitutions obtained by an even
number of inversions. If we normalize the functions S(z) by the require-
ment that the radius of the orthogonal circle be 1, and if we observe that

the most general linear transformation of the unit circle onto itself is

ol = 1, 1al <1,

we arrive at the following result:
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If the conditions (59) and (60) are satisfied, then S(2) is a single-valued
automorphic function in |2| < 1 which s invariant under a group of linear
substitutions of the form (61), i.e., we have

(63) | % AWMB = 1)

for the substitutions of this group. The group in question can be.generated
by three particular substitutions and their inverses.

We add a few remarks concerning the analytic expression of the func-
tionw = S(z). It wasshown inSec.7, Chap. V, that the inverse z = s(w)
of w = S(2) is, up to an arbitrary linear transformation, of the form (75),
Sec. 7, Chap. V. This expression does not, however, yield the inverse of
the function w = S(2) as normalized in the present section. To obtain
the latter function—corresponding to the position of the fundamental
triangle as indicated in Fig. 40—we have to go back to the fact, proved in
Sec. 7, Chap. V, that the function mapping the upper half-plane onto a
circular triangle with the angles wa, 78, =y can be represented as the
quotient of two linearly independent solutions of the hypergeometric
differential equation . .

64) wd—-wX"+—-Q+a+dwlt —abf =0, ¢ = Wuem.
where

(65) a=1-—c¢ B=b—a y=c¢c—a—b

As also shown in Sec. 7, Chap. V, (64) is solved by the hypergeometric
_ series . ,

ale + b+ 1)
2le(c + 1)

€Eowoob<m~m%wo~_s_AH.P.mﬁggommooﬁ& m&ﬁmob m.mogmmummv%
the remark that by substituting .

(66)  Flapom) =1+ 224 4

Sw.l_l....w

“

= w

in (64) we arrive at a differential equation for ¢1 which differs from that

for ¢ only by the fact that a, b, ¢ are now replaced by ¢ — ¢ + 1,5 —
¢+ 1, 2 — ¢, respectively. Since (64) is solved by the function (66), it
follows that another solution of (64) is given by .

(67) wF@a—c+1,b—c+ 1,2 —¢c;w), 0<e<l.

Since, for w = 0, this solution reduces to 0, while the solution (66) reduces
to 1, these two solutions are linearly independent. : S

integral, is satisfied since, by (65), v
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Consider now the quotient of the two.solutions (66) and (67 ), t.e., the
function S S .
_ _wWF@a@—c+1,b—c+ 1,2~ ¢ w)
(68) z = .w..osv = = F(ab,e00) y

where a, b, n._wﬂ.w connected with Q». B, v by va“ or, if we solve (65) for
a, b, ¢, by

69) a=31-a—f=7v), b=dl-atf-n), c=1-a

Since ¢ < 1, it follows from (68) that s(0) = 0, which shows that one
vertex of the circular triangle is situated at z = 0. The hypergeometrie
function (66) is obviously real if all its arguments are real. If we choose
that determination of w'~ which is real for positive w, it follows therefore
from (68) that s(w) is real if w varies along the real axis from w = 0 to
w = 1. Hence, one side of the circular triangle is a part of the positive
axis terminating at the origin. A second side of the circular triangle is
obtained as the conformal image of the negative axis — o < w < 0.
While the two hypergeometric functions in (68) are also real for these
values of w, the factor w'— is now equal to .

Wt = Al?\e_vwla = _se_~loA®ﬂw.vulu - _S_mlawiawlav
R _g*nla&ﬂma. )

This shows that — «© < < 0 is mapped by z = s(w) onto a linear seg-

ment which makes the angle ra with the real axis at the origin. We have .

thus proved that the circular triangle yielded by the function (68) has

indeed the position indicated in Fig. 40, v . :
We finally compute the coordinates of the vertices of the circular

triangle upon which Im {w} > 0 is mapped by (68), that is, the values of

(0), s(1), s(). Tofind w(1), we observe that, by (73), Sec.7, Chap V,

o s ) ,.

_ﬁ
-Flab,c;1) = Es_w%l ) % =11 - g)e—o—b=1'ff "

_ @) =a~—0)
T T(c— a)T(c —b) : -

The condition ¢ —a — b > 0, which is H.ma&nmm for the existence of the
¢ —a—b. Using (68) we thus

find.

_ T2~ ¢e)T(c — a)T(c — b).
(70) W) = ToTa —ara—5

This is the vertex with the angle my. Since s(0) = 0, it thus remains to
find the vertex s(« ), corresponding to the angle 78, For this purpose we



