APP

DIX A

DETERMINATION OF ALL FINITE GROUPS OF PROPER
ROTATIONS IN 3-SPACE (cf. p. 77).

A SIMPLE PROOF for the completeness of the
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first established by Leonhard Euler in the
eighteenth century that every proper rotation
in 3-space which is not the identity / is rota-
tion around an axis, i.e. it leaves fixed not
only the origin O but every point on a cer-
tain stralght line thmnorh O, the axis /. It
is sufficient to cons'der the two-dimensional
sphere 2 of unit radius around O instead of
the three-dimensional space; for every rota-
tion carries 2 into itself and thus is a one-to-
one mapping of 2 into itself. Every proper
rotation # [ has two fixed points on Z Wthh
re antipodes of each other, n
where the axis / pierces the sphere.

Given a finite group I of proper rotations of
order N, we consider the fixed points of the
N — 1 operations of T' which are different
from I. We call them poles. Each pole p
has a definite multiplicity v (= 2 or 3 or 4
or *+ * *): The operations § of our group
which leave p invariant consist of the itera-
tions of the rotation around the corresponding
axis by 360°/v, and hence there are exactly v
such operations §. They form a cyclic sub-

group I', of order ». One of these operations
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tions # I leaving p fixed amounts to » — 1.

For any point p on the sphere we may con-
sider the finite set C of those points ¢ into
which p is carried by the operations of the
group; we call them points equivalent to p.
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Because T' is a group this equivalence is of
the nature of an cquality, i.e. the point p is
equivalent to itself; if ¢ is equivalent to p
then p is equivalent to ¢; and if both ¢ and
g: are equivalent to p then ¢, and ¢, are
equivalent among each other. We speak of
our set as a class of equivalent points; any
point of the class may serve as its representa-
tive p inasmuch as the class contains with p
all the points equivalent to p and no others.
While the points of a sphere are indiscernible
under the group of all proper rotations, the
points of a class remain even indiscernible
after this group has been limited to the
finite subgroup T'.

Of how many points does the class C,, of
the points equivalent to p consist? The
answer: of .V points. that naturally sug-
gests itself, is correct provided [ is the only
operation of the group which leaves p fixed.
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‘or then any two different ope
of T carry p into two different points ¢, = p3,,
q2 = p.Sg since their coincidence ¢ = ¢
would imply that the operation 815, 7! carries
p into itself, and would thus lead to 157! = [,
§1 = S;.  Butsuppose now that p is a pole of

multiplicity v so that » operations of the group
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number of points ¢q of which the class €, con-
sists equals N/v.

Proof: Since the points of the class are in-
discernible even under the given group T,
cach must be of the same multiplicity ».

Let us first demonstrate this explicitly. If
the operation L of T' carries p into q- then
L-'SL carrics ¢ into ¢ provided § carries p
into p. Vice versa, if T is any operation of
I' carrying ¢ into itself then § = LTL™!
carrics p into p and hence T is of the form

L~'SL where S is an clement of the group T'y.



Thus if $y =1, 8y, © + -, S, are the » ele
ments leaving p fixed then

Ty=L$L, To=L"SL, -,
T, = L-'S,L

are the v different operations leaving ¢
fixed. Moreover, the v different operations
S\L, + + -, S,L carry p into ¢. Vice versa,
if U 1s an operation of I" carrying p into ¢ then
UL™! carries p into p and thus is one of the
opcrations S leaving p fixed; therefore
U = SL where § is one of the v operations
Sy, + -, 8,. Nowlet g, - -, ¢ be the
n different points of the class C = C, and
let L; be one of the operations in I' carrying

p into ¢. (¢ =1, - - -, n). Then all the
n + v operations of the table
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are different from each other. Indeed each
individual linc consists of different operations.
And all the operations of, say, the second
line must be different from those in the fifth
line since the former carry p into ¢, and the
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every operation of the group I' is contained
in the table becausc any one of them carries
p into one of the points g, * * |, ¢n, say
into ¢i, and must therefore figure in the ith
line of our table.

This proves the relation ¥ = nv and thus

the fact that the multiplicity »
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N. We use the notation v = y, for the
multiplicity of a pole p; we know that it is the
same for every pole p in a given class C,
and it can therefore also be denoted in an
unambiguous manner by ve. The multi-
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plicity »¢ and the number ne of poles in the
class C are connected by the relation ncve = N.

After these preparations let us now con-
sider all pairs (S5, p) consisting of an opera-
tion § 5 I of the group I' and a point p left
fixed by S—or, what is the same, of any pole
p and any operation § # [ of the group leav-
ing p fixed. This double description indi-
cates a double enumeration of those pairs.
On the one hand there are N — 1 operations
S in the group that are different from I, and
each has two antipodic fixed points; hence
the number of the pairs equals 2(N — 1).
On the other hand, for each poie p there are
v, — 1 operations # [ in the group leaving p
fixed, and hence the number of the pairs

equals the sum
z (vp — 1)
P

extending over all poles p. We collect the
poles into classes C of equivalent poles and
thus obtain the following basic equation:

2N = 1) = Enc(vc — 1)

C

where the sum to the right extend: 1
classes C of poles. On taking the equation
ncve = N into account, division by N yields

the relation

330D

What follows is a discussion of this equation.
The most trivial case is the one in which the
group I' consists of the identity only; then
N = 1, and there are no poles.
Leaving aside this trivial case we can say



that NV is at least 2 and hence the left side
of our equation is at least 1, but less than 2.
The first fact makes it impossible for the
sum to the right to consist of one term only.
Hence there are at least two classes C. But
certainly not more than 3. For as each v
is at least 2, the sum to the right would at
least be 2 if it consisted of 4 or more terms.
Consequently we have either two or three
classes of equivalent poles (Cases II and III
respectively).
I1. In this case our equation gives

2 _ 1,1 N, N
18] Vo
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But two positive integers n; = N/,
ny = N/vy, can have the sum 2 only if each
equals 1:
V1=V"2:.,N.; ﬂ1=7l2=1.

he two classes of equivalent
poles consists of one pole of multiplicity N
What we find here is the cyclic group of rota-
tions around a (vertical) axis of order N.

I11. In this case we have

1 1 1 2
wtntn Tt w
Arrange the multiplicities » in ascending
order, vy, < va < v3. Not all three num-
bers vy, vy, v3 can be greater than 2; for then
the left side would give a result that is
<134 144+ 15 =1, contrary to the value
of the right side. Hence v, = 2,

I

4 4 4
1 1 1
— 4 — =+
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Not both numbers vy, v; can be > 4, for
then the left sum would be < 14. Therefore
Vo = 2 or 3.
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First alternative II1;: v, = vy = 2,
.N = 2V3.

Second alternative Illy: v, = 2, vy = 3;
1 1 2

—_— .
_— ——
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Set »3 = n in Case III,. We have two
classes of poles of multiplicity 2 each con-
sisting of n poles, and one class consisting of
two poles of multiplicity n. It is easily seen
that these conditions are fulfilled by the
dihedral group D) and by this group only.

For the second alternative III, we have,
in view of v3 > vs = 3, the following three

possibilities:

93‘—"-‘-3, N=12, V3=4, .N=24,
V3=5, N=60,

which we denote by T, W, P respectively.

T: There are two classes of 4 three-poles
each. It is clear that the poles of one class
must form a regular tetrahedron and those of
the other are their antipodes. We therefore
obtain the tetrahedral group. The 6 equiva-
lent two-poles are the projections from O
onto the sphere of the centers of the 6 edges.

W: One class of 6 four-poles, forming the
corners of a regular octahedron; hence the
octahedral group. One class of 8 three-
poles (corresponding to the centers of the
sides); one class of 12 two-poles (correspond-
ing to the centers of the edges).

Case P: One class of 12 five-poles which
must form the corners of a regular icosa-
hedron. The 20 three-poles correspond to
the centers of the 20 sides, the 30 two-poles to
the centers of the 30 edges of the polyhedron.



