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To my dear friend Paulo Ribenboim 
on the occasion of the 200th anniversary 
of Leonhard Euler' s death 

1. Introduction 

Leonhard  Euler, the great  Swiss mathematician,  died 
in St. Petersburg (now Leningrad) 200 years  ago, on 
the 18th of September ,  1783. Euler was the most  em- 
inent  and influential mathematic ian of the 18th cen- 
tury  and he was by  far the most  prolific mathematic ian 
of  all t ime.  His  d i s cove r i e s  in m a t h e m a t i c s  and  in 
m a n y  fields of science are so numerous  that  his col- 
lected work will eventual ly  fill about  80 quar to  vol- 
umes.  

All his life Euler worked  intensively on problems in 
numbe r  theory.  He was already 70 years old and al- 
mos t  blind w h e n  he discovered the convenient numbers 
in connect ion wi th  his search for large pr ime numbers .  
There  is a close relat ionship of these number s  with 
class field theory,  and  there remain m a n y  interest ing 
open  questions relating to them. 

2. Sums of Squares 

Effectively opening  up  class field theory,  Fermat,  Euler 
and  Lagrange made  the fundamenta l  observat ion that 
the pr ime numbers  represen ted  by certain integral bi- 
na ry  quadratic forms are all in the same arithmetical 
progressions,  that is that  they can be characterized by  
congruence  condit ions and  hence are representable  by 
linear forms. This means  that  there is a class field (that 
is, an abelian extension) L over  the rationals Q such 
that  all pr imes r ep resen ted  by that same form have the 
same decomposi t ion  law in L. 

A first such observat ion was made  by Fermat  in a 
letter to his fr iend Mersenne  on the 25th of December,  
1640. 

THEOREM 1: An odd prime number p is the sum of two 
squares of natural numbers, p = x 2 q- y2, x,y E N = 

{1,2,3 . . . .  }, if and only if p ==- 1 modulo 4. 
Furthermore, this representation is unique and x and y 

are relatively prime, (x,y) = 1. 

Euler p ro v ed  this theorem more  than a century later, 
in 1750. In 1758, Euler not iced and  proved  that the 
converse is also true. 

THEOREM 2: If an odd natural number n > 1 is repre- 
sentable as a sum of two non-negative integers in exactly one 
way n = x 2 + y2, x,y E N (N stands for the non-negative 
integers) and if, in addition, x and y are relatively prime, 
then n is a prime number. 

Hence  a criterion is obtained that  allows us to test 
whe the r  a given number  n is pr ime or not. It suffices 
to subtract  f rom n all squares x 2 less than n/2 and to 
check w h e t h e r  a square y2 is left over  exactly once and  
whe the r  (x,y) = 1 for this pair x,y. 

In v iew of Theorem 1 this m e t h o d  can only be ap- 
plied to number s  n -= 1 modu lo  4. In order  to extend 
it also to number s  n of the form n -- 3 modulo  4 Euler 
examined the representa t ions  n = x 2 + 2y 2 and n = 
x 2 + 3y 2, which  had already been  studied by  Fermat,  
and, more  generally,  n = ax 2 + by 2 where  a and b are 
any natural  numbers  with (a,b) = 1. Euler 's results, 
publ ished in 1774 and 1763, are these: 

THEOREM 3: (a) An odd prime number p is representable 
by the form x 2 + 2y 2, p = x 2 + 2y 2, with x,y E N, if and 
only if p =-- 1,3 modulo 8. This representation is unique and 
x and y are relatively prime. 

(b) Conversely, if n > 1 is an odd natural number which 
is representable in exactly one way as n = x 2 + 2y 2 with 
x,y E N, and if x and y are relatively prime, then n is a 
prime. 

THEOREM 4: (a) A prime p ~ 2,3 is representable by the 
form x 2 + 3y 2, p = x 2 -ff By 2, with x,y E N if and only 
if p ==- 1 modulo 3. This representation is unique and x and 
y are relatively prime. 

(b) Conversely, if n > 1 is an odd natural number which 
is representable in exactly one way as n = x 2 + 3y 2, with 
x,y E N, and if x and 3y are relatively prime, then n is a 
prime. 
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Euler p roved  all par ts  of Theo rem  3 except  the one 
that  says that  if p = 3 m o d u l o  8 then  p is representab le  
as p = x 2 + 2y 2. As to Theo rem  4, Euler p roved  only 
the first half of the theorem.  Comple te  proofs  of The- 
orems 3 and  4 were  first g iven by  Lagrange  in 1775. 
With the help  of the last t heorem Euler  was  able to 
show,  for instance,  that  n = 1,000,003 = 10002 + 3 �9 12 
is pr ime,  whe rea s  n = 10,003 = 1002 + 3 . 1 2  = 162 
+ 3 �9 572 is not.  In fact 10,003 = 7 .  1429, w h e r e b y  the 
two factors can be found  by  means  of the two different 
representa t ions .  

3. Conven ient  N u m b e r s  

Unfor tuna te ly  it is no t  possible to get t heo rems  anal- 
ogous  to T h e o r e m s  2, 3, and  4 for the general  form ax 2 
+ by 2. This is s h o w n  by  the example  x 2 + 11y 2. For, 
15 = 22 + 11 �9 12 is the only represen ta t ion  of 15 by 
the form x 2 + 11y 2, bu t  15 is not  pr ime.  Euler was  thus  
led to p o s e  the  f o l l o w i n g  q u e s t i o n .  W h i c h  na tu r a l  
number s  m satisfy the following criterion (C)? 

(c) 

If n > 1 is an odd natural number which is repre- 
sentable as n = x 2 q- my 2 with non-negative num- 
bers x,y E N in exactly one way, and if in addition, 
(x, my) = 1, then n is a prime. 

If a natural  n u m b e r  m satisfies criterion (C) then  it 
is called a convenient number (numerus idoneus). 

More precisely,  Euler  in t roduced  conven ien t  num-  
bers  in 1778 in the fol lowing way.  

DEFINITION 5: A form ax 2 -F by 2, with a,b E N and (a,b) 
= 1, is called a conven ien t  fo rm if it satisfies the following 
condition: 

Any  natural  n u m b e r  n > 1 that  is represen tab le  in 
exactly one w a y  as n = ax 2 + by 2, with  x,y E N such 
that  (x,y) = 1, is necessar i ly  of the fo rm 

n = t p o r n  --- 2 t p o r n  = t2 s, 

where  t is a divisor  of a �9 b, p is an odd  pr ime,  and  
s is a natural  n u m b e r .  

In his definit ion Euler  did not  explicitly men t ion  the 
possibili ty n = t �9 2 s, wi th  t # 1, bu t  this case has to 
be included. 

Notice that  a conven ien t  fo rm x 2 + my 2 satisfies con- 
dition (C). For, if n > 1 is required to be  odd,  then  n 
= t �9 p, and  the condi t ion (x, my) = 1 implies  that  t = 
1 since t is a divisor  of m and  of n and  hence  any  pr ime 
factor of t is a divisor  of x and  of my. 

Next  Euler es tabl i shed the fol lowing result.  

THEOREM 6: Let a,b E N with (a,b) = 1. Then the form 
ax 2 + by 2 is convenient if and only if the form x 2 + aby 2 
is convenient. 

In his p roof  Euler a s s u m e d  tha t  a and  b are not  di- 
visible by  squares ,  but  we  shall see later that this as- 
s u m p t i o n  is not  necessary  (see T h e o r e m  13). 

This last  t heo rem suggests  the  following definition. 

DEFINITION 7: A number m E N is called convenien t  
(Latin: idoneus ,  French: convenable)  if the form x 2 + my 2 
is convenient. 

Such a n u m b e r  m is i ndeed  convenien t  (in the ev- 
e r y d a y  sense)  for searching for large pr ime n u m b e r s  
and  for test ing whe the r  a g iven  n u m b e r  n is p r ime  or 
not. 

Euler  g a v e  severa l  i l lus t ra t ions  of his m e t h o d  of 
searching for p r ime  n u m b e r s  (see Sections 2 and  8). 

4. Euler's Criterion 

Next  Euler  set out  to de t e rmine  all convenient  n u m -  
bers  and  he  no ted  in 1778 the fol lowing empirical  re- 
sult: 

T H E O R E M  8: The following 65 numbers are convenient 

1 2 3 4 5 6 7 8 9 10 
12 13 15 16 18 21 22 24 25 28 
30 33 37 40 42 45 48 57 58 60 
70 72 78 85 88 93 102 105 112 120 

130 133 165 168 177 190 210 232 240 253 
273 280 312 330 345 357 385 408 462 520 
760 840 1320 1365 1848 

He  a d d e d  that  he  ob ta ined  this table "qui te  eas i ly"  
by  a p p l y i n g  the  fo l lowing  cr i ter ion,  wh ich  we  will 
refer to as "Euler ' s  cri terion." 

THEOREM 9: A number m E N is convenient if and only 
if every natural number n of the form 

n = m + x 2 < 4 m w i t h x E N , ( x , m )  = 1 

is necessarily of one of the four forms 

n = p, n = 2p, n = p2, or n = 2 s, 

where p is an odd prime number and s E N. 

This  cr i ter ion was ,  in its tu rn ,  ob t a ined  by  Euler  
f rom the fol lowing result, which  has  no overt  reference 
to conven ien t  numbers .  

THEOREM 10: If a composite number r " s (r > s) is rep- 
resentable by the form x 2 + my 2 in a single way with x,y 
E N and with (x, my) = 1 and (rs, mxy) = 1, then there 
exist infinitely many other composite numbers with the same 
property. In particular, if the hypothesis is satisfied, then 
there is always such a composite number rs with rs < 4m. 
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Euler himself i l lustrated the criterion embodied  in 
Theorem 9 for the number s  m = 11, 13, 14, 15, 60. 

For m = 13 we have,  for instance, 

13 + 12 = 14 = 2p 
13 + 22 = 17 = p 
13 + 32 = 22 = 2p 
13 + 42 = 29 = p 
13 + 52 = 38 = 2p 
13 + 62 = 49 = p2 

hence  m = 13 mus t  be convenient .  Again, wi th  m = 
15 we have 

15 + 12 = 16 = 24 
15 + 22 = 19 = p 
15 + 42 = 31 = p 

and  we conclude that  15 is convenient .  On  the other  
hand,  14 is not  convenient ,  since 

14 + 12 = 15 = 3" 5 

Euler 's  proof of Theorem 9 contains some serious 
gaps as Grube noticed in 1874. Grube was, however ,  
able to show that the criterion is indeed necessary; but  
whe the r  it is also sufficient is still an open  problem, in 
spite of the remark  made  by Gauss in his "Disquisi- 
t iones  a r i t h m e t i c a e "  (Art.  303) tha t  this  is easy  to 
prove.  Thus,  we should  regard as incomplete  the proof 
just  given that 13 and  15 are convenient .  On the other  
hand,  Grube could der ive from Gauss 's  theory  of qua- 
dratic forms a criterion which comes close to Euler's 
criterion (see Theorem 15). 

Euler was surpr ised to discover that he did not  find 
any more  convenient  numbers  beyond  1848 in spite of 
his efforts to extend the calculations up  to 3000 and 
later up  to 10,000. In order  to unders tand  this phe-  
nome non ,  he s tudied the distribution of the conve- 
nient  numbers  and found  the following ten propert ies.  

THEOREM 11: 1. If m is convenient and m = t 2, then t 
= 1 , 2 , 3 , 4 , 5 .  

2. If m is convenient and m ~ 3 modulo 4, then 4m is 
convenient. 

3. If m is convenient and m =- 4 modulo 8, then 4m is 
convenient. 

4. If k2m is convenient, then m is convenient. 
5. If m is convenient and m =- 2 modulo 3, then 9m is 

convenient. 
6. If m > 1 is convenient and m -~ 1 modulo 4, then 

4m is not convenient. 
7. If m is convenient and m = 2 modulo 4, then 4m is 

convenient. 
8. If m is convenient and m ==- 8 modulo 16, then 4m is 

not convenient. 

9. If m is convenient and m =- 16 modulo 32, then 4m 
is not convenient. 

10. If m is convenient and m + a 2 = p2 < 4m for a 
prime p, then 4m is not convenient. 

Euler 's proofs  of the proper t ies  4, 6, 8 and 9 above 
were not  quite rigorous, but  Grube  was able to give a 
complete proof  of Theorem 11 in 1874. Grube,  who,  in 
fact, gave proofs of generalized versions of several of 
these propert ies ,  showed  that  they  are all easy con- 
sequences of Gauss 's  theory of quadratic forms. 

5. Gauss's  Criterion and Grube's  Criterion 

The principal  theorem of Gauss concerning convenient  
numbers ,  on  which Grube 's  paper  is based, is the fol- 
lowing (see [8], Art. 303). 

THEOREM 12: (a) A number m E N is convenient if and 
only if every genus of properly primitive integral binary qua- 
dratic forms of determinant d = - m contains precisely one 
proper class of properly primitive forms; 

or alternatively, 
(b) A number m E N is convenient if and only if every 

proper class of properly primitive integral binary quadratic 
forms with determinant d = - m  is a proper ambiguous 
class of properly primitive forms. 

For the definit ion of these not ions  and for more de- 
tails see [6] or the for thcoming publication [7]. 

Gauss certainly has a proof  of this theorem, but  the 
credit for having first publ ished a proof  must  go to 
Grube (1874). 

From the criterion of Theorem 12 one immediately 
derives the next  theorem,  of which  Theorem 6 is a 
special case. 

THEOREM 13: If a, b, a', b' are natural numbers with (a,b) 
= 1, (a',b') = 1 and ab = a'b', then the form F = ax 2 + 
by 2 is convenient if and only if the form F' = a'x 2 + b'y 2 
is convenient. 

This follows from Gauss 's  criterion (Theorem 12), 
since F and  F' are proper ly  primitive forms, because 
(a,b) = 1 and  (a',b') = 1, and  have the same deter-  
minant  d = - a b  = - a ' b ' .  

Gauss 's  criterion, together  wi th  the reduct ion theory  
of quadrat ic  forms,  is at the basis of the following cri- 
terion, attributable to Grube.  

THEOREM 14: A number m E N is convenient if and only 
if every natural number n of the form 

r - . - - . -  

n = m + x 2 w i t h x E  N a n d x K  ~ /~  

admits no factorizations 

n = r s w i t h s ~ r ~ 2 x ,  r, s E N  
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except those of the form 

r = s o r r  = 2x. 

Notice that Grube ' s  criterion reinstates 13 and 15 as 

convenient  numbers .  
N o w  let us look at some further examples. For m = 

48, one has the factorizations 

48 + 12 = 49 = 7 . 7  : r  = s 
48 + 22 = 52 = 4 . 1 3 : r  = 2x 
48 + 32 = 57 
48 + 42 = 64 = 8" 8 : r  = s 

(there are no other  factorizations n = rs with s i> r 
2x). Hence m = 48 is convenient.  Similarly m = 60 is 
convenient,  since 

60 + 12 = 61 
60 + 22 = 64 = 8 �9 8 : r = s 
60 + 32 = 69 
60 + 42 = 76 

but  m = 11 is not  convenient ,  because 

11 + 12 = 12 = 3 �9 4 w i t h  s > r > 2 x .  

Grube  d e t e r m i n e d  all conven ien t  n u m b e r s  which  
are divisible by a square k 2 # 1. For the others, he 
derived the fol lowing criterion which comes close to 
the still u n p r o v e n  criterion of Euler. 

THEOREM 15: Suppose m E N is not divisible by a square 
and suppose m ~ 3, 7, 15. 

Then m is convenient if and only if every natural number 
n of the form 

n = m + x 2 w i t h n  E N a n d x <  ~ /~  

r , , , , , , , - -  

is also of the form 

n = tp, n = 2tp or n = p2 

where t is a divisor of m, and p is an odd prime number. 

As an example let us examine m = 120. From The- 
o r e m  11, p r o p e r t i e s  4 and  7, we d e d u c e  that  m = 
4(4k + 2), k ~ N, is convenient  if and only if 4k + 2 
is convenient.  Hence  120 is convenient  if and only if 
30 is convenient.  By applying Theorem 15, as we may 
since 30 is not  divisible by a square, we find 

30 + 12 = 31 = p 
30 + 22 = 34 = 2 . 1 7  = 2p 
30 + 32 = 39 = 3 . 1 3  = tp 

and therefore that  m = 30 is convenient .  Thus m = 
120 is also convenient .  

6. The Problem of the Completeness 
of Euler's Table 

Euler 's  guess  that his table (Theorem 8) contains all 
convenient  numbers  is still an unp roven  conjecture, 
a l though this problem seems to be close to a solution. 
Initial progress  was made  by S. Chowla who showed  
in 1934 that there are only finitely m a n y  convenient  
numbers .  His proof  rests on a paper  by Heilbronn and  
on the proper ty  that 

lim h(d) = 
d~= g(d) 

where  h(d) denotes  the n u m b e r  of proper  classes and 
g(d) the number  of genera of binary quadratic forms 
with de terminant  d. By us ing Siegel's asymptotic  for- 
mula and  the analytic class number  formula, Briggs 
and Chowla  (1954), and later E. Grosswald (1963), and 
P. J. Weinberger  (1973) made  further progress on the 
problem. The result which emerges  from this work  is 
that the table is, in fact, complete,  except for possibly one 
more number! 

7. Applications 

Euler applied the convenient  numbers  effectively in 
order  to search for prime number s  or test given n u m -  
bers for primality. In addit ion to the examples already 
men t ioned  in Section 2 he determined,  by means  of 
the convenient  number  m = 232, all prime numbers  p 
of the form 

p = 1 + 232y 2 w i t h 1  ~ y ~  300, y E  N. 

He fur ther  studied primes of the form 

p = 40x 2 + 13y 2 

and of the form 

p = x 2 + 1848y 2. 

In particular, he found all pr imes p of the form 

p = 1972 + 1848y2with 1 ~ y ~ 100, y E N. 

There are, in fact, 22 such prime numbers  and the 
largest a m o n g  them is 

p = 1972 + 1848"1002 = 18,518,809. 

This was  by far the largest pr ime k n o w n  at that time, 
except for the Mersenne prime p = 231 - 1, also dis- 
covered by Euler. 

From class field theory and  from Gauss 's  criterion, 
one can deduce  another  impor tan t  proper ty  of con- 

continued on page 64 
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sibly with the aid of the Mathematics Education De- 
partment; and  an evening for the local mathematics 
teachers is also unde r  consideration. Time is of course 
the major problem. 

Events of this k ind have to be rather carefully or- 
ganized.  We h a d  an  advisory  commit tee  including 
teachers, Local Author i ty  representatives, and people 
from the University and  GEC. While this did not have 
to meet very often, it did keep a careful eye on the 
prepara t ions  over  a long period: about  six mon ths  
prior to the classes themselves. Without  this kind of 
preparation, we doubt  the classes would  have been a 
success. In fact we found  that the classes involved as 
much preparation as an undergraduate  lecture course, 
and  were  more  e x h a u s t i n g  to give, bu t  very  re- 
warding. 

It was important  that  the lecturers and  tutors were 
on familiar g r o u n d  both  geographical ly  and  mathe-  
matically (except in the case of the gyroscope class, 
when  the tutors refused to descend from their balcony 
for coffee in case their ignorance was revealed). The 
informal a tmosphere,  the (at least partial) blurring of 
the hierarchical teacher/pupil relationship, was abso- 
lutely crucial. The children were sacrificing a large part 
of their weekends  for ten solid weeks: they  had  to do 
this voluntarily, and  because they enjoyed it. If it had 

been "an  extra day  of school" they  wouldn ' t  have kept 
coming. There was clearly some strong pressure on 
them from schools and parents,  to keep attending, but  
this alone would  not have sustained the kind of in- 
terest we observed; and the children themselves com- 
mented  favourably on the atmosphere.  

It was very satisfying to work on a project that  in- 
volved not  just the University, but  the community:  
schools, and  above all local industry.  The GEC repre- 
sentative, John Lorriman, took a great interest in the 
way the classes developed. 

W h e t h e r  the classes m a d e  a n y  impac t  tha t  will 
amoun t  to much  in the long run  is unclear: ten weeks 
is a very short  time. But they  do show that  it is possible 
to capture the interest of the most  able young mathe- 
maticians at a crucial stage in their development.  We 
hope  tha t  other  inst i tut ions ,  wi th  similar concerns,  
may  take up the masterclass idea, or use it as a basis 
for their own  efforts; and we 'd  like to think that we 've 
made  a small but  significant contribution to the future 
of mathematics  in this country.  

Mathematics Institute 
University of Warwick 
Coventry CV4 7AL 
England 

Euler's Convenient Numbers 
continued from page 58 

venient numbers,  which we now describe. 

THEOREM 16: Let m E N. Then all prime numbers p of 
the form 

p = x 2 + my 2 w i t h x , y ~ N  

can be characterized by congruence conditions with respect 
to a single modulus f if and only if m is convenient. 

The number  f is called the conductor of m. Recall that, 
for m = 1, 2, 3 we found  f = 4, 8, 3 respectively (see 
Theorems 1, 3 and  4). 

These directions of research and these results, how- 
ever, by no means  exhaust  the possibilities inherent  in 
Euler's concept of convenient  numbers.  To name but 
one totally different type of application, we refer to the 
work of Hilf who  showed  in 1963 (see [1], p. 57) the 
relat ion of conven ien t  numbers  to e igenvalue  prob- 
lems in phys ics .  The ma themat i ca l  l egacy  of Euler  
seems truly a cornucopia. 
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