"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
*  는 타원함수가 됨.<br>
 
*  는 타원함수가 됨.<br>
 +
 +
 
  
 
 
 
 
17번째 줄: 19번째 줄:
 
(증명)
 
(증명)
  
<math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 를 정의하자.
+
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자.
 +
 
 +
<math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}</math> 이므로 <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 의 로랑급수를 구한 뒤, 미분을 하면 된다.
 +
 
 +
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
<math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}</math>
+
<br>

2009년 7월 2일 (목) 21:33 판

정의
  • 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여, 
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)

 

  • 는 타원함수가 됨.

 

 

\(\wp\)의 로랑급수
  • 원점에서의 로랑급수는 다음과 같이 주어짐.
    \(\wp(z)=z^{-2}+\frac{1}{20}g_2z^2+\frac{1}{28}g_3z^4+O(z^6)\)
    여기서 \(g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}\)

 

(증명)

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) \) 를 정의하자.

\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}\) 이므로 \(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 의 로랑급수를 구한 뒤, 미분을 하면 된다.

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)\)