"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
6번째 줄: | 6번째 줄: | ||
* 는 타원함수가 됨.<br> | * 는 타원함수가 됨.<br> | ||
+ | |||
+ | |||
17번째 줄: | 19번째 줄: | ||
(증명) | (증명) | ||
− | <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 를 정의하자. | + | <math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자. |
+ | |||
+ | <math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}</math> 이므로 <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 의 로랑급수를 구한 뒤, 미분을 하면 된다. | ||
+ | |||
+ | <math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
− | < | + | <br> |
2009년 7월 2일 (목) 21:33 판
정의
- 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여,
\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
- 는 타원함수가 됨.
\(\wp\)의 로랑급수
- 원점에서의 로랑급수는 다음과 같이 주어짐.
\(\wp(z)=z^{-2}+\frac{1}{20}g_2z^2+\frac{1}{28}g_3z^4+O(z^6)\)
여기서 \(g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}\)
(증명)
\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) \) 를 정의하자.
\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}\) 이므로 \(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 의 로랑급수를 구한 뒤, 미분을 하면 된다.
\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)\)