"베르누이 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[베르누이 다항식]]
 
* [[베르누이 다항식]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
* 베르누이 다항식의 생성함수는 다음과 같이 정의
 
* 베르누이 다항식의 생성함수는 다음과 같이 정의
23번째 줄: 23번째 줄:
 
 
 
 
  
<h5 style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; line-height: 2em;">베르누이수와 베르누이 다항식</h5>
+
<h5 style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; line-height: 2em;">베르누이수와 베르누이 다항식==
  
 
* <math>B_n(0)=B_n</math><br>
 
* <math>B_n(0)=B_n</math><br>
31번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; line-height: 2em;">예</h5>
+
<h5 style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; line-height: 2em;">예==
  
 
* 처음 몇 베르누이 다항식
 
* 처음 몇 베르누이 다항식
57번째 줄: 57번째 줄:
 
 
 
 
  
==곱셈공식</h5>
+
==곱셈공식==
  
 
<math>B_n(mx)= m^{n-1} \sum_{k=0}^{m-1} B_n \left(x+\frac{k}{m}\right)</math>
 
<math>B_n(mx)= m^{n-1} \sum_{k=0}^{m-1} B_n \left(x+\frac{k}{m}\right)</math>
63번째 줄: 63번째 줄:
 
 
 
 
  
==L-함수와의 관계</h5>
+
==L-함수와의 관계==
  
 
* [[디리클레 L-함수]]<br><math>n\geq 1</math> 일 때,<br><math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})</math><br>
 
* [[디리클레 L-함수]]<br><math>n\geq 1</math> 일 때,<br><math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})</math><br>
71번째 줄: 71번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실==
  
 
 
 
 
77번째 줄: 77번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
85번째 줄: 85번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들==
  
 
* [[베르누이 수]]<br>
 
* [[베르누이 수]]<br>
94번째 줄: 94번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
103번째 줄: 103번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EB%B2%A0%EB%A5%B4%EB%88%84%EC%9D%B4_%EB%8B%A4%ED%95%AD%EC%8B%9D http://ko.wikipedia.org/wiki/베르누이_다항식]
 
* [http://ko.wikipedia.org/wiki/%EB%B2%A0%EB%A5%B4%EB%88%84%EC%9D%B4_%EB%8B%A4%ED%95%AD%EC%8B%9D http://ko.wikipedia.org/wiki/베르누이_다항식]
116번째 줄: 116번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
124번째 줄: 124번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
138번째 줄: 138번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
149번째 줄: 149번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
  
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]

2012년 11월 1일 (목) 12:49 판

이 항목의 스프링노트 원문주소==    
개요==
  • 베르누이 다항식의 생성함수는 다음과 같이 정의
\(\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}\)
  • 좀더 구체적으로는 다음과 같이 주어짐
\(B_n(x)=\sum_{k=0}^n {n \choose k}B_k x^{n-k}\) 여기서 \(B_k\) 는 베르누이 수    
베르누이수와 베르누이 다항식==
  • \(B_n(0)=B_n\)
   
예==
  • 처음 몇 베르누이 다항식
\(B_0(x)=1\) \(B_1(x)=x-1/2\) \(B_2(x)=x^2-x+1/6\) \(B_3(x)=x^3-\frac{3}{2}x^2+\frac{1}{2}x\\) \(B_4(x)=x^4-2x^3+x^2-\frac{1}{30}\) \(B_5(x)=x^5-\frac{5}{2}x^4+\frac{5}{3}x^3-\frac{1}{6}x\\) \(B_6(x)=x^6-3x^5+\frac{5}{2}x^4-\frac{1}{2}x^2+\frac{1}{42}\) 베르누이 다항식 \(B_k (x) \) 는 다음과 같은 성질을 가진다. (점화 관계) \(\frac{d }{dt}B_k (x) = B_{k-1} (x)\)    

곱셈공식

\(B_n(mx)= m^{n-1} \sum_{k=0}^{m-1} B_n \left(x+\frac{k}{m}\right)\)

 

L-함수와의 관계

  • 디리클레 L-함수
    \(n\geq 1\) 일 때,
    \(L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})\)

 

 

재미있는 사실==    
역사==    
관련된 다른 주제들==    
수학용어번역==  
사전 형태의 자료==    
관련논문==    
관련도서 및 추천도서==    
관련기사==    
블로그==