"2차원 회전 변환과 SO(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/9771072">3차원 공간의 회전과 SO(3)</a>페이지로 이동하였습니다.)
49번째 줄: 49번째 줄:
 
* [[삼각함수에는 왜 공식이 많은가?]]
 
* [[삼각함수에는 왜 공식이 많은가?]]
 
* [[한글과 기하학적 변환]]
 
* [[한글과 기하학적 변환]]
 +
* [[이차곡선(원뿔곡선)]]
  
 
 
 
 
56번째 줄: 57번째 줄:
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
<h5>매스매티카 파일 및 계산 리소스</h5>
  
*  
+
* http://docs.google.com/leaf?id=0B8XXo8Tve1cxMjJiMDAyZDMtYTMzMi00ZDI1LWE4ZGUtMjc5MjQ4YWY0OGUx&sort=name&layout=list&num=50
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/

2012년 2월 15일 (수) 07:03 판

이 항목의 수학노트 원문주소

 

 

개요
  • 평면에서 원점을 중심으로 각도 \(\theta \) 만큼의 회전변환은 다음 행렬로 표현된다
    \(\begin{pmatrix}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\)
  • \(\theta_1\)과 \(\theta_2\) 만큼 회전시키는 두 회전변환을 합성하면, \(\theta_1+\theta_2\) 만큼 회전시키는 또다른 회전변환을 하나 얻게 되는데, 이로부터 덧셈공식을 얻을 수 있다
    \(\begin{pmatrix}\cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \begin{pmatrix}\cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}=\begin{pmatrix}\cos (\theta_{1}+\theta_{2}) & -\sin (\theta_{1}+\theta_{2}) \\ \sin (\theta_{1}+\theta_{2}) & \cos (\theta_{1}+\theta_{2}) \end{pmatrix}\)
  • 2차원 회전변환들의 집합은 군의 구조를 갖는다
  • 단위원과 평면의 회전변환 군은 군론의 입장에서 같다

 

 

길이의 보존
  • \((x',y')=(x \cos (\theta )-y \sin (\theta ),x \sin (\theta )+y \cos (\theta ) )\)이면, \(x^2+y^2=(x')^2+(y')^2\) 이 성립한다

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서