"복소 이차 수체의 데데킨트 제타함수 special values"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 2em;"><math>s=1</math> 에서의 값</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
  
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br>
+
* [[복소이차수체의 데데킨트 제테함수]]
*  복소이차수체의 경우<br><math>K=\mathbb{Q}(\sqrt{-q})</math>, <math>q \geq 7</math> , <math>q \equiv 3 \pmod{4}</math> 인 경우<br><math>d_K=-q</math><br><math>\chi(a)=\left(\frac{a}{q}\right)</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=i\sqrt{q}</math><br><math>L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}</math><br><math>h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>  <br><math>K=\mathbb{Q}(\sqrt{-q})</math>  , <math>q \geq 5</math> ,  <math>q \equiv 1 \pmod{4}</math> 인 경우<br><math>d_K=-4q</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=2i\sqrt{q}</math><br><math>L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}</math><br><math>h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>
 
  
 
 
 
 
8번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;"><math>s=2</math> 에서의 값</h5>
+
<h5>개요</h5>
  
*  복소이차수체의 경우<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]]<br>
+
 
  
 
 
 
 
16번째 줄: 15번째 줄:
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 2em;"><math>s=1</math> 에서의 값</h5>
  
* <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값<br>
+
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br>
** [[L-함수의 미분]]<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
+
*  복소이차수체의 경우<br><math>K=\mathbb{Q}(\sqrt{-q})</math>, <math>q \geq 7</math> , <math>q \equiv 3 \pmod{4}</math> 인 경우<br><math>d_K=-q</math><br><math>\chi(a)=\left(\frac{a}{q}\right)</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=i\sqrt{q}</math><br><math>L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}</math><br><math>h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>  <br><math>K=\mathbb{Q}(\sqrt{-q})</math>  , <math>q \geq 5</math> ,  <math>q \equiv 1 \pmod{4}</math> 인 경우<br><math>d_K=-4q</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=2i\sqrt{q}</math><br><math>L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}</math><br><math>h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>
  
 
 
 
 
25번째 줄: 24번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 2em;"><math>s=2</math> 에서의 값</h5>
 +
 
 +
*  복소이차수체의 경우<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]]<br>
 +
 
 +
 
  
 
 
 
 
31번째 줄: 34번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
* <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값<br>
 +
** [[L-함수의 미분]]<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
  
 
 
 
 

2012년 6월 1일 (금) 10:29 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

 

\(s=1\) 에서의 값
  • 이차 수체에 대한 디리클레 class number 공식
  • 복소이차수체의 경우
    \(K=\mathbb{Q}(\sqrt{-q})\), \(q \geq 7\) , \(q \equiv 3 \pmod{4}\) 인 경우
    \(d_K=-q\)
    \(\chi(a)=\left(\frac{a}{q}\right)\)
    \(\chi(-1)=-1\), \(\tau(\chi)=i\sqrt{q}\)
    \(L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}\)
    \(h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}\)
     
    \(K=\mathbb{Q}(\sqrt{-q})\)  , \(q \geq 5\) ,  \(q \equiv 1 \pmod{4}\) 인 경우
    \(d_K=-4q\)
    \(\chi(-1)=-1\), \(\tau(\chi)=2i\sqrt{q}\)
    \(L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}{\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}\)
    \(h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}\)

 

 

\(s=2\) 에서의 값
  • 복소이차수체의 경우
    \(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)
    \(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)
    여기서 \(D(z)\)는 Bloch-Wigner dilogarithm

 

 

 

  • \(s=1\) 에서의 \(L_{d_K}'(1)\)의 값
    • L-함수의 미분
      \(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서