"분할수가 만족시키는 합동식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
15번째 줄: | 15번째 줄: | ||
− | + | ==항등식</h5> | |
<math>\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}</math> | <math>\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}</math> | ||
29번째 줄: | 29번째 줄: | ||
− | + | ==역사</h5> | |
41번째 줄: | 41번째 줄: | ||
− | + | ==메모</h5> | |
47번째 줄: | 47번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[자연수의 분할(partition)과 rank/crank 목록|자연수의 분할(partition)과 rank 목록]] | * [[자연수의 분할(partition)과 rank/crank 목록|자연수의 분할(partition)과 rank 목록]] | ||
66번째 줄: | 66번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ |
2012년 10월 31일 (수) 18:10 판
이 항목의 스프링노트 원문주소
개요
- 라마누잔의 발견
\(p(5k+4)\equiv 0 \pmod 5\)
\(p(7k+5)\equiv 0 \pmod 7\)
\(p(11k+6)\equiv 0 \pmod {11}\)
==항등식
\(\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}\)
\(\sum_{k=0}^\infty p(7k+5)q^k=7\frac{(q^7;q^7)_\infty^3}{(q;q)_\infty^4}+49q\frac{(q^7;q^7)_\infty^7}{(q;q)_\infty^8}\)
==역사
==메모
==관련된 항목들
수학용어번역
==사전 형태의 자료