"삼각함수의 무한곱 표현"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 삼각함수의 무한곱 표현로 바꾸었습니다.) |
|||
9번째 줄: | 9번째 줄: | ||
* 사인함수의 무한곱표현<br><math>\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)</math><br><math>\sin{\pi x} = x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)</math><br> | * 사인함수의 무한곱표현<br><math>\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)</math><br><math>\sin{\pi x} = x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)</math><br> | ||
* [[감마함수]] 의 다음공식을 보이는데 응용할 수 있다<br><math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math><br> | * [[감마함수]] 의 다음공식을 보이는데 응용할 수 있다<br><math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사인의 무한곱</h5> | ||
+ | |||
+ | <math>\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)</math> | ||
75번째 줄: | 83번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
− | * http://en.wikipedia.org/wiki/ | + | * http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Infinite_product_formulae |
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions] |
2012년 5월 19일 (토) 07:43 판
이 항목의 수학노트 원문주소
개요
- 사인함수의 무한곱표현
\(\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)\)
\(\sin{\pi x} = x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\) - 감마함수 의 다음공식을 보이는데 응용할 수 있다
\(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
사인의 무한곱
\(\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)\)
역사
메모
관련된 항목들[[로그 사인 적분 (log sine integrals)|]]
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Infinite_product_formulae
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
- Euler, De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum dissertatio altera, in qua eaedem summationes ex fonte maxime diverso derivantur Miscellanea Berolinensia 7, 1743, pp. 172-192
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/