"삼각함수의 일반화"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
13번째 줄: 13번째 줄:
 
 
 
 
  
<h5>삼각함수의 일반화</h5>
+
==삼각함수의 일반화</h5>
  
 
* 곡선의 매개화 함수들 -> uniformization
 
* 곡선의 매개화 함수들 -> uniformization
40번째 줄: 40번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
48번째 줄: 48번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
 
 
 
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
 
 
 
71번째 줄: 71번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
84번째 줄: 84번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
91번째 줄: 91번째 줄:
 
 
 
 
  
<h5>관련도서 및 추천도서</h5>
+
==관련도서 및 추천도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
105번째 줄: 105번째 줄:
 
 
 
 
  
<h5>블로그</h5>
+
==블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 10월 31일 (수) 18:58 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 삼각함수를 이해하는 다양한 관점에 따라 많은 분야로 일반화됨

 

 

==삼각함수의 일반화

  • 곡선의 매개화 함수들 -> uniformization
  • 타원함수론, 보형함수론 -> uniformization
  • 유한군의 표현론 character 
  • 리대수의 표현론 
  • 세타함수 
  • 직교다항식 orthogonal polynomials

 

 

삼각함수와 타원함수
  • 타원함수는 두 세타함수의 비(quotient)로 얻어짐.
  • 이러한 관점에서 \(\sin z\),  \(\cos z\) 를 타원함수에 비유할 수 있고, \(\tan z=\frac{\sin z}{\cos z}\) 를 타원함수에 비유할 수 있음.
  • \(\sin (z+\pi)=-\sin z\), \(\cos (z+\pi)=-\cos z\) 는 \(\chi : \mathhbb{Z} \to \{\pm1\}\) 로 주어지는 form
    • 타원함수의 무한곱표현과 유사한  \(\sin z\),  \(\cos z\) 의 무한곱표현도 있음.
  • 둘의 비를 취함으로써, \(\tan (z+\pi)=\tan z\) 주기함수를 얻는다.

 

 

 

==역사

 

 

==메모

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==사전 형태의 자료

 

 

==관련논문

 

==관련도서 및 추천도서

 

 

==블로그