"삼각함수의 적분"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | [[월리스 곱 (Wallis product formula)]] | ||
+ | |||
+ | |||
+ | <math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math> | ||
+ | |||
+ | |||
+ | |||
+ | (증명) | ||
+ | |||
+ | |||
+ | |||
+ | <math>\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx</math> | ||
+ | |||
+ | 치환적분 <math>u=\cos x</math>, <math>dv=\sin^{n-2}x\cos x \dx</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx</math> | ||
+ | |||
+ | <math>\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!</math> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;"> </h5> | ||
+ | |||
+ | http://en.wikipedia.org/wiki/Integral_of_secant_cubed |
2011년 1월 28일 (금) 07:46 판
월리스 곱 (Wallis product formula)
\(\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\)
(증명)
\(\int\sin^n {x}\,dx = \int\sin^{n-2}{x} (1-\cos^2 x)\,dx=\int\sin^{n-2}{x}-\sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx\)
\(\int \sin^{n-2}{x}\cos^2 x\,dx=\int (\sin^{n-2}{x}\cos x)\cos x \,dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\int \frac{1}{n-1}\sin^{n-1}x \sin x dx=\frac{1}{n-1}\sin^{n-1}x\cos x+\frac{1}{n-1}\int \sin^{n}x \,dx\)
치환적분 \(u=\cos x\), \(dv=\sin^{n-2}x\cos x \dx\)
\(\int\sin^n {x}\,dx=\int\sin^{n-2}{x}-\int \sin^{n-2}{x}\cos^2 x\,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x-\frac{1}{n-1}\int \sin^{n}x \,dx\)
\(\frac{n}{n-1}\int \sin^{n}x \,dx=\int\sin^{n-2}{x}-\frac{1}{n-1}\sin^{n-1}x\cos x\)
\(\int\sin^n {x}\;dx = -\frac{\sin^{n-1} x\cos x}{n} + \frac{n-1}{n}\int\sin^{n-2} x\;dx\)
\(\int\cos^n x\;dx = \frac{\cos^{n-1} x\sin x}{n} + \frac{n-1}{n}\int\cos^{n-2} x\;dx \qquad\mbox{(for }n>2\mbox{)}\,\!\)