"리만 세타 함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
38번째 줄: | 38번째 줄: | ||
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> | ||
− | + | * 자코비 fundamenta nova<br> | |
− | + | * <br> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q=theta+function | * http://www.google.com/search?hl=en&tbs=tl:1&q=theta+function | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= |
2011년 10월 18일 (화) 03:53 판
이 항목의 스프링노트 원문주소
개요
오일러의 오각수정리(pentagonal number theorem)
\(\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)
의 양변에 \(q^{1/24}\)를 곱하여, 데데킨트 에타함수의 세타함수 표현을 얻는다
\(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
- 자코비 fundamenta nova
-
- http://www.google.com/search?hl=en&tbs=tl:1&q=theta+function
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사연표
메모