"수체의 유수 (class number)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;"> </h5>
 
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5>
 
  
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
 
+
* [[수학사연표 (역사)|수학사연표]]<br>  <br>
  
==== 하위페이지 ====
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
  
* [[1964250|0 토픽용템플릿]]<br>
+
*  
** [[2060652|0 상위주제템플릿]]<br>
+
* http://mathoverflow.net/questions/19021/avoiding-minkowskis-theorem-in-algebraic-number-theory/<br>
  
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
* [[수학사연표 (역사)|수학사연표]]<br>  <br>
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
 
 
* 네이버 지식인<br>
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 

2010년 11월 7일 (일) 17:58 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 수체의 class number는 기본적으로 그 수체의 대수적정수환이 UFD를 이루는지, 벗어난다면 얼마나 벗어나는지를 재는 것으로 이해할 수 있음.
    • class number 가 1인 경우, UFD가 됨.
    • 더 정확히는 class number 는 ideal class group 의 원소의 개수임.
    • ideal class group = the group of fractional ideals/the group of principal ideals
  • 주어진 수체의 대수적 정수는 격자구조를 가짐
  • 수체의 ideal들이 얼마나 다양한 기하학적 구조를 가지는가를 분류

 

 

ideal class group

 

 

 

 

역사
메모

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상