"순환군과 유한아벨군의 표현론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
52번째 줄: | 52번째 줄: | ||
* [[순환군]] | * [[순환군]] | ||
+ | * [[유한생성 아벨군의 기본정리]] | ||
+ | * [[아벨군]] | ||
2009년 11월 17일 (화) 17:38 판
이 항목의 스프링노트 원문주소
간단한 소개
- 유한 순환군의 표현론은 매우 간단함.
- \(\mathbb{Z}/n\mathbb{Z}\) 의 기약표현은 모두 1차원으로 주어짐.
- \(\zeta=e^{{2\pi i} \over n}\) 라 두자.
- \(\chi \colon \mathbb Z/n\mathbb Z \to \mathbb C^{*}\) 는 \(\chi(1)\) 에 의해서 결정됨.
- 한편, \(\chi(g)^n=\chi(g^n)=1\) 을 만족시켜야 하므로, \(\chi(1)=\zeta^r, r=0,1,\cdots,n-1\) 만이 가능하다.
- 이렇게 주어진 n개의 기약표현이 크기가 n인 순환군의 모든 기약표현이 된다.
하위주제들
하위페이지
재미있는 사실
관련된 단원
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
수학용어번역
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=