"숫자 12와 24"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
** If we take a double cover Mp2(Z) of SL2(Z), we have (Mp2(Z))ab = Z/24.
 
** If we take a double cover Mp2(Z) of SL2(Z), we have (Mp2(Z))ab = Z/24.
 
** [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br><math>\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{(2\pi)^2}{24}</math><br>
 
** [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br><math>\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{(2\pi)^2}{24}</math><br>
** [[#]]
+
** [[분할수의 생성함수(오일러 함수)]]<br><math>z=q</math>,<math>q=e^{-\epsilon}</math> 으로 두면 <math>\epsilon\sim 0</math> 일 때, <math>1-q\sim \epsilon</math><br><math>\prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6\epsilon})=\exp(\frac{(2\pi)^2}{24\epsilon})</math><br>  <br>  <br>
 
* 26=24+2 is the critical dimension in bosonic string theory
 
* 26=24+2 is the critical dimension in bosonic string theory
 
* [[스털링 공식]]<br><math>  n!=\sqrt{2\pi n}\left({n\over e}\right)^n  \left(    1    +{1\over12n}    +{1\over288n^2}    -{139\over51840n^3}    -{571\over2488320n^4}    + \cdots  \right)</math><br>
 
* [[스털링 공식]]<br><math>  n!=\sqrt{2\pi n}\left({n\over e}\right)^n  \left(    1    +{1\over12n}    +{1\over288n^2}    -{139\over51840n^3}    -{571\over2488320n^4}    + \cdots  \right)</math><br>

2010년 3월 14일 (일) 08:35 판

개요
  • 수학에서 숫자 12와 24는 매우 흥미로운 수.
  • 모듈라 군(modular group)과 깊게 관련되어 있음.
    • 12 = cusp form이 가질수 있는 가장 작은 weight
      \(\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2 \cdots\)
      는 weight 12 cusp form
    • \(\operatorname{SL}(2,\mathbb{Z})_{ab}=C_{12}\)
    • \(\chi(SL(2,\mathbb{Z}))=-\frac{1}{12}\)
  • 24
  • 26=24+2 is the critical dimension in bosonic string theory
  • 스털링 공식
    \( n!=\sqrt{2\pi n}\left({n\over e}\right)^n \left( 1 +{1\over12n} +{1\over288n^2} -{139\over51840n^3} -{571\over2488320n^4} + \cdots \right)\)

 

관련된 항목들

 

 

위키링크

 

 

관련논문

 

 

관련기사