"슈르 다항식(Schur polynomial)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
17번째 줄: | 17번째 줄: | ||
* [[반데몬드 행렬과 행렬식 (Vandermonde matrix)]] | * [[반데몬드 행렬과 행렬식 (Vandermonde matrix)]] | ||
* 슈르다항식은 다음과 같이 정의된다<br><math>s_{\lambda} = \frac{a_{\lambda+\rho}}{a_{\rho}}</math><br> | * 슈르다항식은 다음과 같이 정의된다<br><math>s_{\lambda} = \frac{a_{\lambda+\rho}}{a_{\rho}}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>예</h5> | ||
+ | |||
+ | * 변수의 개수가 3이고, 4의 분할인 경우의 슈르 다항식<br><math>\left( \begin{array}{cc} \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+\left(x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3\right) x_3+\left(x_1^2+x_1 x_2+x_2^2\right) x_3^2+\left(x_1+x_2\right) x_3^3+x_3^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ \{2,2\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\ \{2,1,1\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\ \{1,1,1,1\} & 0 \end{array} \right)</math><br> | ||
+ | |||
+ | |||
63번째 줄: | 73번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
+ | |||
+ | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWE1NTJlYzktMTk5Mi00YWUyLWE2M2YtMTdhNmIwOTc0NmY3&sort=name&layout=list&num=50 | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://functions.wolfram.com/ | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation] | ||
+ | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
2012년 2월 1일 (수) 08:51 판
이 항목의 수학노트 원문주소
개요
- 변수의 개수 n과 d의 분할(partition)이 \(\lambda\)가 주어지면 d차 다항식 \( s_\lambda(x_1,\ldots,x_n)\) 이 결정된다
- 다음과 같은 두 개의 d의 분할을 생각하자
- \(\rho : n-1,n-2,\cdots, 0\)
- \(\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\)
- \(a_{\lambda+\rho}=\operatorname{det}(x_{i}^{\lambda_{j}+n-j})\)
- \(a_{\rho}=\operatorname{det}(x_{i}^{n-j})\)
- 반데몬드 행렬과 행렬식 (Vandermonde matrix)
- 슈르다항식은 다음과 같이 정의된다
\(s_{\lambda} = \frac{a_{\lambda+\rho}}{a_{\rho}}\)
예
- 변수의 개수가 3이고, 4의 분할인 경우의 슈르 다항식
\(\left( \begin{array}{cc} \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+\left(x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3\right) x_3+\left(x_1^2+x_1 x_2+x_2^2\right) x_3^2+\left(x_1+x_2\right) x_3^3+x_3^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ \{2,2\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\ \{2,1,1\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\ \{1,1,1,1\} & 0 \end{array} \right)\)
영 태블로
\(s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)\)
여기서 sum is over all semistandard Young tableaux T of shape λ
The first Giambelli formula (Jacobi-Trudy 항등식)
- explicit expression of Schur polynomials as a polynomial in the complete homogeneous symmetric polynomials:
- \(s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})\)
역사
메모
\(s_{\lambda} =\sum_{w\in S_{r} } \epsilon(w) h_{\lambda+\rho - w.\lambda}\)
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWE1NTJlYzktMTk5Mi00YWUyLWE2M2YtMTdhNmIwOTc0NmY3&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Lindström–Gessel–Viennot_lemma
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문