"슬레이터 8"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
  
 
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도</h5>
 
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도</h5>
 
 
 
  
 
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br>
 
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br>
58번째 줄: 56번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식</h5>
  
<math>\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}=\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}</math>
+
* 항등식<br><math>\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}=\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}</math><br>
 
 
* [[베일리 쌍(Bailey pair)과 베일리 보조정리]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\frac{3}{2}n^2+\frac{1}{2}n}(1-q^{2n+1})}{1-q}\cdot \frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{2n^2+n}-q^{2n^2+3n+1})=\sum_{n=0}^{\infty}(-1)^{n}(q^{2n^2+n}-q^{2n^2+3n+1}) =\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}</math><br>
 
 
 
 
 
  
[http://www.wolframalpha.com/input/?i=expand[product[%281-q%5E%284n-1%29%29%281-q%5E%284n-3%29%29%281-q%5E%284n%29%29,%7Bn,1,10%7D]] http://www.wolframalpha.com/input/?i=expand[product[(1-q^(4n-1))(1-q^(4n-3))(1-q^(4n)),{n,1,10}]]]
+
* [[베일리 쌍(Bailey pair)과 베일리 보조정리]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\frac{3}{2}n^2+\frac{1}{2}n}(1-q^{2n+1})}{1-q}\cdot \frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{2n^2+n}-q^{2n^2+3n+1})=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{2n^2+n} =\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}</math><br>
  
 +
* [http://www.wolframalpha.com/input/?i=expand[product[%281-q%5E%284n-1%29%29%281-q%5E%284n-3%29%29%281-q%5E%284n%29%29,%7Bn,1,10%7D]] http://www.wolframalpha.com/input/?i=expand[product[(1-q^(4n-1))(1-q^(4n-3))(1-q^(4n)),{n,1,10}]]]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=

2011년 11월 15일 (화) 03:57 판

이 항목의 수학노트 원문주소

 

 

개요
  • 항등식
    \(\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}=\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}\)

 

 

항등식의 분류

 

 

켤레 베일리 쌍의 유도
  • q-가우스 합 에서 얻어진 다음 결과를 이용
    \(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
    \(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
  • 다음 특별한 경우
    \(x=q^2, y=-q, z\to\infty\).
  • 얻어진 켤레 베일리 쌍 (슬레이터 2 와 같음)
    \(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}=\frac{(q^2;q^2)_{n}}{(q)_{n}}q^{\frac{n(n+1)}{2}}\)
    \(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)

 

 

 

베일리 쌍의 유도
  • 다음을 이용
    \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
  • 다음의 특수한 경우
    \(a=q, c\to\infty, d\to\infty\)
  •  
    얻어진 베일리 쌍
    \(\alpha_{n}=\frac{(-1)^{n}q^{\frac{3}{2}n^2+\frac{1}{2}n}(1-q^{2n+1})}{1-q}\)
    \(\beta_n=\frac{1}{(q)_{n}}\)
    \(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}\)

 

 

베일리 쌍
  • 베일리 쌍과 켤레 베일리 쌍
    \(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}=\frac{(q^2;q^2)_{n}}{(q)_{n}}q^{\frac{n(n+1)}{2}}\)
    \(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
    \(\alpha_{n}=\frac{(-1)^{n}q^{\frac{3}{2}n^2+\frac{1}{2}n}(1-q^{2n+1})}{1-q}\)
    \(\beta_n=\frac{1}{(q)_{n}}\)

 

 

q-series 항등식
  • 항등식
    \(\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}=\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}\)
  • 베일리 쌍(Bailey pair)과 베일리 보조정리
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
    \(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}\)
    \(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\frac{3}{2}n^2+\frac{1}{2}n}(1-q^{2n+1})}{1-q}\cdot \frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{2n^2+n}-q^{2n^2+3n+1})=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{2n^2+n} =\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}\)

 

 

베테 타입 방정식 (cyclotomic equation)

Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).

Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\)  has a unique root \(0<\mu<1\). We get

\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)

 

 

\((1-x)^2(1-x^2)^{-1}=x^{1}\)

 

 

다이로그 항등식

\(4L(x)-L(x^2)=\frac{\pi^2}{4}\)

\(x=\sqrt{2}-1\)