"오일러-맥클로린 공식"의 두 판 사이의 차이
35번째 줄: | 35번째 줄: | ||
* [[스털링 공식]] | * [[스털링 공식]] | ||
* [[거듭제곱의 합을 구하는 공식]] | * [[거듭제곱의 합을 구하는 공식]] | ||
+ | * [[오일러상수, 감마]] | ||
+ | |||
+ | |||
60번째 줄: | 63번째 줄: | ||
그 다음, <math>n=10</math> 인 경우에 다음식을 계산하여, 값을 비교함. | 그 다음, <math>n=10</math> 인 경우에 다음식을 계산하여, 값을 비교함. | ||
− | <math>\sum_{k=1}^{n-1} \frac{1}{k^2}+\frac{1}{n}+ \frac{1}{2n^2}+\frac{1}{6n^3}-\frac{1}{30n^5}+\frac{1}{42n^7}-\frac{1}{30n^9} | + | <math>\sum_{k=1}^{n-1} \frac{1}{k^2}+\frac{1}{n}+ \frac{1}{2n^2}+\frac{1}{6n^3}-\frac{1}{30n^5}+\frac{1}{42n^7}-\frac{1}{30n^9}</math> |
− | + | <math>1.6449340668474930714\cdots=1.5397677311665406904\cdots + 0.10516633568095238095\cdots</math> | |
− | + | <math>\frac{\pi^2}{6}=1.6449340668482264365\cdots</math> | |
− | |||
− | |||
75번째 줄: | 76번째 줄: | ||
<math>\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k}-\ln n=\gamma</math> | <math>\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k}-\ln n=\gamma</math> | ||
− | |||
− | |||
<math>\int f(x)\,dx=\ln x</math>, <math>f(x)=\frac{1}{x}</math>, <math>f'(x)=-\frac{1}{x^2}</math>, <math>f^{(2)}(x)=\frac{2}{x^3}</math>, <math>f^{(3)}(x)=-\frac{6}{x^4}</math>, <math>f^{(k-1)}(x)=(-1)^{k-1}\frac{(k-1)!}{x^{k}}</math> | <math>\int f(x)\,dx=\ln x</math>, <math>f(x)=\frac{1}{x}</math>, <math>f'(x)=-\frac{1}{x^2}</math>, <math>f^{(2)}(x)=\frac{2}{x^3}</math>, <math>f^{(3)}(x)=-\frac{6}{x^4}</math>, <math>f^{(k-1)}(x)=(-1)^{k-1}\frac{(k-1)!}{x^{k}}</math> | ||
90번째 줄: | 89번째 줄: | ||
그 다음, <math>n=10</math> 인 경우에 다음식을 계산하면, | 그 다음, <math>n=10</math> 인 경우에 다음식을 계산하면, | ||
− | <math>\sum_{k=1}^{n-1} \frac{1}{k}-\ln n +\frac{1}{2n}+}\frac{1}{12n^2}+\frac{1}{120n^4}-\frac{1}{252^6}+\frac{1}{240n^8} | + | <math>\sum_{k=1}^{n-1} \frac{1}{k}-\ln n +\frac{1}{2n}+}\frac{1}{12n^2}+\frac{1}{120n^4}-\frac{1}{252^6}+\frac{1}{240n^8}</math> |
− | |||
− | |||
− | + | <math>0.5772156649008\cdots=0.5263831609742\cdots+0.05083250392659\cdots</math> | |
− | 참고로 <math>\gamma=0. | + | 참고로 <math>\gamma=0.5772156649015\cdots</math> |
2009년 5월 1일 (금) 15:13 판
간단한 소개
- 수열의 합과 적분을 연결해주는 공식
\(\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
\(\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\)
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)
\(\frac{B_k}{k!}\) 는 \(\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}\)
\(\sum_{i=0}^{n-1} f(i) = \int^n_0f(x)\,dx-\frac{1}{2}(f(n)-f(0))+\frac{1}{12}(f'(n)-f'(0))-\frac{1}{720}(f^{(3)}(n)-f^{(3)}(0))+\frac{1}{30240}(f^{(5)}(n)-f^{(5)}(0))-\frac{1}{1209600}(f^{(7)}(n)-f^{(7)}(0))+\cdots\)
유용한 표현
\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
단, \(f^{(-1)}(x)=\int f(x)\,dx\) 라고 쓰자.
응용
오일러와 바젤 문제
\(\sum_{1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}\)
\(\int f(x)\,dx=-\frac{1}{x}\), \(f(x)=\frac{1}{x^2}\), \(f'(x)=-\frac{2}{x^3}\), \(f^{(2)}(x)=\frac{6}{x^4}\), \(f^{(3)}(x)=-\frac{24}{x^5}\), \(f^{(k-1)}(x)=(-1)^{k-1}\frac{k!}{x^{k+1}}\)
\(\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(1)\right) =(-1)^{k-1}B_k(\frac{1}{n^{k+1}}-1) \)
\(\sum_{k=1}^{n-1} \frac{1}{k^2} = -(\frac{1}{n}-1) -\frac{1}{2}(\frac{1}{n^2}-1)-\frac{1}{6}(\frac{1}{n^3}-1)+\frac{1}{30}(\frac{1}{n^5}-1)-\frac{1}{42}(\frac{1}{n^7}-1)+\frac{1}{30}(\frac{1}{n^9}-1) \cdots\)
여기서 오일러는 다음식이 참이라고 가정(사실은 발산함)
\(1+\frac{1}{2}+\frac{1}{6}-\frac{1}{30}+\frac{1}{42}-\frac{1}{30}+\cdots=\frac{\pi^2}{6}\)
그 다음, \(n=10\) 인 경우에 다음식을 계산하여, 값을 비교함.
\(\sum_{k=1}^{n-1} \frac{1}{k^2}+\frac{1}{n}+ \frac{1}{2n^2}+\frac{1}{6n^3}-\frac{1}{30n^5}+\frac{1}{42n^7}-\frac{1}{30n^9}\)
\(1.6449340668474930714\cdots=1.5397677311665406904\cdots + 0.10516633568095238095\cdots\)
\(\frac{\pi^2}{6}=1.6449340668482264365\cdots\)
오일러상수 \(\gamma\)
\(\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k}-\ln n=\gamma\)
\(\int f(x)\,dx=\ln x\), \(f(x)=\frac{1}{x}\), \(f'(x)=-\frac{1}{x^2}\), \(f^{(2)}(x)=\frac{2}{x^3}\), \(f^{(3)}(x)=-\frac{6}{x^4}\), \(f^{(k-1)}(x)=(-1)^{k-1}\frac{(k-1)!}{x^{k}}\)
\(\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(1)\right) =(-1)^{k-1}\frac{B_k}{k}(\frac{1}{n^{k}}-1)\)
\(\sum_{k=1}^{n-1} \frac{1}{k}-\ln n = -\frac{1}{2}(\frac{1}{n}-1)-\frac{1}{12}(\frac{1}{n^2}-1)-\frac{1}{120}(\frac{1}{n^4}-1)+\frac{1}{252}(\frac{1}{n^6}-1)-\frac{1}{240}(\frac{1}{n^8}-1) \cdots\)
여기서 오일러라면(?) 다음식이 참이라고 가정 (사실은 발산함)
\(\frac{1}{2}+\frac{1}{12}+\frac{1}{120}-\frac{1}{252}+\frac{1}{240}+\cdots=\gamma\)
그 다음, \(n=10\) 인 경우에 다음식을 계산하면,
\(\sum_{k=1}^{n-1} \frac{1}{k}-\ln n +\frac{1}{2n}+}\frac{1}{12n^2}+\frac{1}{120n^4}-\frac{1}{252^6}+\frac{1}{240n^8}\)
\(0.5772156649008\cdots=0.5263831609742\cdots+0.05083250392659\cdots\)
참고로 \(\gamma=0.5772156649015\cdots\)
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- Euler-Maclaurin summation formula (pdf)
- E. Hairer (Author), G. Wanner
- From Analysis by Its History, 160-169p
- Dances between continuous and discrete: Euler's summation formula
- David J. Pengelley
- in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
- An Elementary View of Euler's Summation Formula
- Tom M. Apostol
- The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 409-418
- The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations
- Vito Lampret
- Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
- An Euler Summation Formula
- Irwin Roman
- The American Mathematical Monthly, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
- http://ko.wikipedia.org/wiki/오일러
- http://en.wikipedia.org/wiki/Euler's_summation_formula
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com