"오일러-맥클로린 공식"의 두 판 사이의 차이
11번째 줄: | 11번째 줄: | ||
* 수열의 합과 적분을 연결해주는 공식 | * 수열의 합과 적분을 연결해주는 공식 | ||
− | <math>\sum_{i= | + | <math>\sum _{i=a}^{b-1} f(i)=\int_a^b f(x) \, dx+\frac{1}{2} (f(a)-f(b))+\frac{1}{12} \left(f'(b)-f'(a)\right)+\frac{1}{720} \left(f^{(3)}(a)-f^{(3)}(b)\right)+\frac{f^{(5)}(b)-f^{(5)}(a)}{30240}+\frac{f^{(7)}(a)-f^{(7)}(b)}{1209600}+\cdots</math> |
+ | |||
+ | * 오차항 | ||
+ | |||
+ | <math>\sum_{i=a}^{b-1} f(i) = \int^b_a f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R</math> | ||
여기서 | 여기서 | ||
17번째 줄: | 21번째 줄: | ||
<math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math> | <math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math> | ||
− | <math>B_0=1</math>, <math>B_1=-{1 \over 2}</math>, <math>B_2={1\over 6}</math>, <math>B_3=0</math>, <math>B_4=-\frac{1}{30}</math>, <math>B_5=0</math>, <math>B_6=\frac{1}{42}</math>, <math>B_8=-\frac{1}{30}</math>, <math>B_{10}=\frac{5}{66}</math>, <math>B_{12}=-\frac{691}{2730}</math>,<math>B_{14}=\frac{7}{6}</math> | + | <math>B_0=1</math>, <math>B_1=-{1 \over 2}</math>, <math>B_2={1\over 6}</math>, <math>B_3=0</math>, <math>B_4=-\frac{1}{30}</math>, <math>B_5=0</math>, <math>B_6=\frac{1}{42}</math>, <math>B_8=-\frac{1}{30}</math>, <math>B_{10}=\frac{5}{66}</math>, <math>B_{12}=-\frac{691}{2730}</math>,<math>B_{14}=\frac{7}{6}</math> 는 [[베르누이 수]] |
<math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math> | <math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math> | ||
− | < | + | |
+ | |||
+ | |||
+ | |||
+ | <h5>응용1.</h5> | ||
+ | |||
+ | * [[거듭제곱의 합을 구하는 공식]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>응용2.</h5> | ||
71번째 줄: | 87번째 줄: | ||
* [[스털링 공식]] | * [[스털링 공식]] | ||
* [[거듭제곱의 합을 구하는 공식]] | * [[거듭제곱의 합을 구하는 공식]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
+ | |||
+ | * | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://functions.wolfram.com/ | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation] | ||
+ | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
2011년 12월 9일 (금) 15:24 판
이 항목의 스프링노트 원문주소
개요
- 수열의 합과 적분을 연결해주는 공식
\(\sum _{i=a}^{b-1} f(i)=\int_a^b f(x) \, dx+\frac{1}{2} (f(a)-f(b))+\frac{1}{12} \left(f'(b)-f'(a)\right)+\frac{1}{720} \left(f^{(3)}(a)-f^{(3)}(b)\right)+\frac{f^{(5)}(b)-f^{(5)}(a)}{30240}+\frac{f^{(7)}(a)-f^{(7)}(b)}{1209600}+\cdots\)
- 오차항
\(\sum_{i=a}^{b-1} f(i) = \int^b_a f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R\)
여기서
\(\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\)
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\) 는 베르누이 수
\(\frac{B_k}{k!}\) 는 \(\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}\)
응용1.
응용2.
유용한 표현
\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
단, \(f^{(-1)}(x)=\int f(x)\,dx\) 라고 쓰자.
응용
재미있는 사실
- 오일러의 계산에 중요하게 활용되었다
관련된 고교수학 또는 대학수학
관련된 항목들
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전자료
관련도서
- 도서내검색
- 도서검색
관련논문
- Euler-Maclaurin summation formula (pdf) , E. Hairer (Author), G. Wanner, From Analysis by Its History, 160-169p
- Dances between continuous and discrete: Euler's summation formula ,David J. Pengelley, in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
- An Elementary View of Euler's Summation Formula, Tom M. Apostol, The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 409-418
- The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations , Vito Lampret, Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
- An Euler Summation Formula , Irwin Roman, The American Mathematical Monthly, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=