"오일러-맥클로린 공식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* 수열의 합과 적분을 연결해주는 공식 | * 수열의 합과 적분을 연결해주는 공식 | ||
29번째 줄: | 29번째 줄: | ||
− | + | ==응용1.</h5> | |
* [[거듭제곱의 합을 구하는 공식]] | * [[거듭제곱의 합을 구하는 공식]] | ||
37번째 줄: | 37번째 줄: | ||
− | + | ==응용2.</h5> | |
47번째 줄: | 47번째 줄: | ||
− | + | ==유용한 표현</h5> | |
<math>\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R</math> | <math>\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R</math> | ||
57번째 줄: | 57번째 줄: | ||
− | + | ==응용</h5> | |
* [[거듭제곱의 합을 구하는 공식]] | * [[거듭제곱의 합을 구하는 공식]] | ||
68번째 줄: | 68번째 줄: | ||
− | + | ==재미있는 사실</h5> | |
* 오일러의 계산에 중요하게 활용되었다 | * 오일러의 계산에 중요하게 활용되었다 | ||
76번째 줄: | 76번째 줄: | ||
− | + | ==관련된 고교수학 또는 대학수학</h5> | |
* [[일변수미적분학]] | * [[일변수미적분학]] | ||
82번째 줄: | 82번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[베르누이 수|베르누이 수와 베르누이 다항식]] | * [[베르누이 수|베르누이 수와 베르누이 다항식]] | ||
92번째 줄: | 92번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2U5NmI1Y2YtNjYyMi00OWEwLWI3MGQtNTRmYjdiYWM4ZTM3&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2U5NmI1Y2YtNjYyMi00OWEwLWI3MGQtNTRmYjdiYWM4ZTM3&sort=name&layout=list&num=50 | ||
107번째 줄: | 107번째 줄: | ||
− | + | ==사전자료</h5> | |
* [http://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC http://ko.wikipedia.org /wiki/오일러] | * [http://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC http://ko.wikipedia.org /wiki/오일러] | ||
116번째 줄: | 116번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
127번째 줄: | 127번째 줄: | ||
− | + | ==관련논문</h5> | |
* Euler-Maclaurin summation formula ([[2637804/attachments/1168462|pdf]]) , E. Hairer (Author), G. Wanner, From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p | * Euler-Maclaurin summation formula ([[2637804/attachments/1168462|pdf]]) , E. Hairer (Author), G. Wanner, From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p | ||
139번째 줄: | 139번째 줄: | ||
− | + | ==블로그</h5> | |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= |
2012년 11월 1일 (목) 01:29 판
이 항목의 스프링노트 원문주소
==개요
- 수열의 합과 적분을 연결해주는 공식
\(\sum _{i=a}^{b-1} f(i)=\int_a^b f(x) \, dx+\frac{1}{2} (f(a)-f(b))+\frac{1}{12} \left(f'(b)-f'(a)\right)+\frac{1}{720} \left(f^{(3)}(a)-f^{(3)}(b)\right)+\frac{f^{(5)}(b)-f^{(5)}(a)}{30240}+\frac{f^{(7)}(a)-f^{(7)}(b)}{1209600}+\cdots\)
- 오차항
\(\sum_{i=a}^{b-1} f(i) = \int^b_a f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R\)
여기서
\(\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\)
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\) 는 베르누이 수
\(\frac{B_k}{k!}\) 는 \(\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}\)
==응용1.
==응용2.
==유용한 표현
\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
단, \(f^{(-1)}(x)=\int f(x)\,dx\) 라고 쓰자.
==응용
==재미있는 사실
- 오일러의 계산에 중요하게 활용되었다
==관련된 고교수학 또는 대학수학
==관련된 항목들
==매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2U5NmI1Y2YtNjYyMi00OWEwLWI3MGQtNTRmYjdiYWM4ZTM3&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전자료
==관련도서
- 도서내검색
- 도서검색
==관련논문
- Euler-Maclaurin summation formula (pdf) , E. Hairer (Author), G. Wanner, From Analysis by Its History, 160-169p
- Dances between continuous and discrete: Euler's summation formula ,David J. Pengelley, in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
- An Elementary View of Euler's Summation Formula, Tom M. Apostol, The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 409-418
- The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations , Vito Lampret, Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
- An Euler Summation Formula , Irwin Roman, The American Mathematical Monthly, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
==블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=