"오일러 수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | ||
− | * 오일러수 <math>E_n</math>은 다음과 같이 정의됨<br><math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^{\infty} \frac{E_n}{n!} \cdot t^n\!</math><br> | + | * 오일러수 <math>E_n</math>은 다음과 같이 정의됨<br><math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^{\infty} \frac{E_n}{n!} \cdot t^n\!</math><br><math>\operatorname {sech}\, x = 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \left |x \right | < \frac {\pi} {2} </math><br> |
− | + | ||
E2 = −1 | E2 = −1 |
2009년 9월 13일 (일) 17:39 판
간단한 소개
- 오일러수 \(E_n\)은 다음과 같이 정의됨
\(\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^{\infty} \frac{E_n}{n!} \cdot t^n\!\)
\(\operatorname {sech}\, x = 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \left |x \right | < \frac {\pi} {2} \)
E2 = −1
E4 = 5
E6 = −61
E8 = 1,385
E10 = −50,521
E12 = 2,702,765
E14 = −199,360,981
E16 = 19,391,512,145
E18 = −2,404,879,675,441
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Euler_number
- http://reference.wolfram.com/mathematica/ref/EulerE.html
- http://www.wolframalpha.com/input/?i=1/cosh+t
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)