"오일러의 convenient number ( Idoneal number)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
29번째 줄: 29번째 줄:
 
<h5>오일러의 판정법 예</h5>
 
<h5>오일러의 판정법 예</h5>
  
* <math>m=13</math><br> 13 + 12 = 14 = 2p<br> 13 + 22 = 17 = p<br> 13 + 32 = 22 = 2p<br> 13 + 42 = 29 = p<br> 13 + 52 = 38 = 2p<br> 13 + 62 = 49 = p2<br>  <br>
+
* <math>m=13</math><br><math>13 + 1^2 = 14 = 2p</math><br><math>13 + 2^2 = 17 = p</math><br><math>13 + 3^2 = 22 = 2p</math><br><math>13 + 4^2 = 29 = p</math><br><math>13 + 5^2 = 38 = 2p</math><br><math>13 + 6^2 = 49 = p^2</math><br> 따라서 <math>m=13</math> 은 convenient<br>
 +
* <math>m=14</math><br><math>14 + 1^2 = 15 = 3 \cdot 5</math><br> 따라서 <math>m=14</math> 는 convenient 가 아님<br>  <br>
  
 
 
 
 
68번째 줄: 69번째 줄:
 
* Baltes, H. P. and Hill E. R.: Spectra of Finite Systems. Bibliographisches Institut, Z~irich, 1976
 
* Baltes, H. P. and Hill E. R.: Spectra of Finite Systems. Bibliographisches Institut, Z~irich, 1976
 
* Chowla, S.: An Extension of Heilbronn's Class Number Theorem. Quarterly J. Math. (Oxford) 5 (1934), 304-307
 
* Chowla, S.: An Extension of Heilbronn's Class Number Theorem. Quarterly J. Math. (Oxford) 5 (1934), 304-307
* Chowla, S. and Briggs, W. E.: On discriminants of binary quadratic forms with a single class in each genus. Canadian J. Math. 6 (1954), 463-470
 
 
* Euler, L.: Opera Omnia. Series Prima. Teubner, Leipzig, 1911-
 
* Euler, L.: Opera Omnia. Series Prima. Teubner, Leipzig, 1911-
 
* Fermat, P.: Oeuvres. Tome 2, 212-217, Gauthier-Villars, Paris, 1894
 
* Fermat, P.: Oeuvres. Tome 2, 212-217, Gauthier-Villars, Paris, 1894
74번째 줄: 74번째 줄:
 
* Frei, G.: Les nombres convenables de Leonhard Euler.(To appear)
 
* Frei, G.: Les nombres convenables de Leonhard Euler.(To appear)
 
* Gauss, C. F.: Disquisitiones arithmeticae. Leipzig, 1801(or: Untersuchungen tiber h6here Mathematik. Herausgegeben von H. Maser, Springer, Berlin, 1889)
 
* Gauss, C. F.: Disquisitiones arithmeticae. Leipzig, 1801(or: Untersuchungen tiber h6here Mathematik. Herausgegeben von H. Maser, Springer, Berlin, 1889)
* Grosswald, E.: Negative discriminants of binary quadratic forms with one class in each genus. Acta Arithmetica 8 (1963), 295-306
 
 
* Grube, F.: Ueber einige Eulersche S/itze aus der Theorie der quadratischen Formen. Zeitschrift f~ir Mathematik und Physik 19 (1874), 492-519
 
* Grube, F.: Ueber einige Eulersche S/itze aus der Theorie der quadratischen Formen. Zeitschrift f~ir Mathematik und Physik 19 (1874), 492-519
 
* Lagrange, J.-L.: Recherches d'arithm6tique, 1773 et 1775. Oeuvres, Tome 3, Gauthier-Villars, Paris, 1867
 
* Lagrange, J.-L.: Recherches d'arithm6tique, 1773 et 1775. Oeuvres, Tome 3, Gauthier-Villars, Paris, 1867
142번째 줄: 141번째 줄:
 
** [[3259130/attachments/2438477|Euler_s_convenient_numbers.pdf]]
 
** [[3259130/attachments/2438477|Euler_s_convenient_numbers.pdf]]
 
** Günther Frei, The Mathematical Intelligencer, Volume 7, Number 3 / 1985년 9월
 
** Günther Frei, The Mathematical Intelligencer, Volume 7, Number 3 / 1985년 9월
 +
* Chowla, S. and Briggs, W. E.: On discriminants of binary quadratic forms with a single class in each genus. Canadian J. Math. 6 (1954), 463-470
 +
*  
  
 
 
 
 

2009년 11월 6일 (금) 17:18 판

간단한 소개
  • 이차형식에 대한 오일러의 연구에서 발견
  • Numeri Idonei
  • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848

 

오일러의 정의
  • 자연수 \(m\)이 다음 조건을 만족시킬 때, convenient number 라고 한다

홀수 \(n > 1\) 이 이차형식\(x^2+my^2\)에 의하여 단 한가지 방법으로 표현되면, (\(x,y\)는 음이 아닌 정수이고 \((x, my) = 1\)), \(n\)은 소수이다

 

 

오일러의 판정법

A number \(m\in \mathbb{N}\) is convenient

if and only if

every natural number \(n\) of the form \(n = m + x^2 <4m\) with \(x\in \mathbb{N}\), \((x,m) = 1\) is necessarily of one of the four forms \(n = p\), \(n = 2p\), \(n = p^2\), \(n = 2^s\) where \(p\) is an odd prime number and \(s\in \mathbb{N}\)

 

오일러의 판정법 예
  • \(m=13\)
    \(13 + 1^2 = 14 = 2p\)
    \(13 + 2^2 = 17 = p\)
    \(13 + 3^2 = 22 = 2p\)
    \(13 + 4^2 = 29 = p\)
    \(13 + 5^2 = 38 = 2p\)
    \(13 + 6^2 = 49 = p^2\)
    따라서 \(m=13\) 은 convenient
  • \(m=14\)
    \(14 + 1^2 = 15 = 3 \cdot 5\)
    따라서 \(m=14\) 는 convenient 가 아님
     

 

 

 

class number 에 따른 분류

 

\(h(-4n)\) n's with one class per genus
1 1,2,3,4,7
2 5,6,8,9,10,12,13,15,16,18,22,25,28,37,58
4 21,24,30,33,40,42,45,48,57,60,70,72,78,85,88,93,102,112,130,133,177,190,232,253
8 105,120,165,168,210,240,273,280,312,330,345,357,385,408,462,520,760
16 840,1320,1365,1848

 

메모
  • Baltes, H. P. and Hill E. R.: Spectra of Finite Systems. Bibliographisches Institut, Z~irich, 1976
  • Chowla, S.: An Extension of Heilbronn's Class Number Theorem. Quarterly J. Math. (Oxford) 5 (1934), 304-307
  • Euler, L.: Opera Omnia. Series Prima. Teubner, Leipzig, 1911-
  • Fermat, P.: Oeuvres. Tome 2, 212-217, Gauthier-Villars, Paris, 1894
  • Frei, G.: On the Development of the Genus of Quadratic Forms. Ann. Sci. Math. Qu6bec 3 (1979), 5-62
  • Frei, G.: Les nombres convenables de Leonhard Euler.(To appear)
  • Gauss, C. F.: Disquisitiones arithmeticae. Leipzig, 1801(or: Untersuchungen tiber h6here Mathematik. Herausgegeben von H. Maser, Springer, Berlin, 1889)
  • Grube, F.: Ueber einige Eulersche S/itze aus der Theorie der quadratischen Formen. Zeitschrift f~ir Mathematik und Physik 19 (1874), 492-519
  • Lagrange, J.-L.: Recherches d'arithm6tique, 1773 et 1775. Oeuvres, Tome 3, Gauthier-Villars, Paris, 1867
  • Steinig, J.: On Euler's Idoenal Numbers. Elemente der Mathematik 21 (1966), 73-88
  • Weinberger, P. J.: Exponents of the class groups of complex quadratic fields. Acta Arithmetica 22 (1973), 117-124

 

하위주제들

 

 

재미있는 사실

 

 

관련된 단원

 

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련논문

 

블로그