"원주율의 BBP 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
<math>\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)</math>
 
<math>\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)</math>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">원주율의 16진법 전개</h5>
 +
 +
* http://www.wolframalpha.com/input/?i=pi+in+base+16<br><math>\pi = 3.243f6a8885a308d313198a2e03707\cdots_{16}</math><br>
 +
 +
 
  
 
 
 
 
68번째 줄: 78번째 줄:
 
* [http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula http://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula]
 
* [http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula http://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://www.wolframalpha.com/input/?i=
 
 
* http://www.wolframalpha.com/input/?i=Bailey-Borwein-Plouffe+formula
 
* http://www.wolframalpha.com/input/?i=Bailey-Borwein-Plouffe+formula
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]

2010년 6월 23일 (수) 14:10 판

이 항목의 스프링노트 원문주소

 

 

개요

\(\pi = \sum_{k = 0}^{\infty}\frac{1}{16^k} \left( \frac{4}{8k + 1} - \frac{2}{8k + 4} - \frac{1}{8k + 5} - \frac{1}{8k + 6} \right)\)

 

 

원주율의 16진법 전개

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그