"월리스 곱 (Wallis product formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5>간단한 소개</h5>
  
 +
<math><br />\prod_{n=1}^{\infty} \frac{(2n)(2n)}{(2n-1)(2n+1)} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot \cdot \cdot = \frac{\pi}{2}.<br /></math>
 +
 +
 
 +
 +
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 대학원 과목</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 다른 주제들</h5>
 +
 +
* [[스털링 공식]]
 +
 +
 
 +
 +
<h5>표준적인 도서 및 추천도서</h5>
 +
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
 
 +
 +
<h5>위키링크</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
 +
<h5>참고할만한 자료</h5>

2009년 2월 10일 (화) 17:51 판

간단한 소개

\(<br/>\prod_{n=1}^{\infty} \frac{(2n)(2n)}{(2n-1)(2n+1)} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot \cdot \cdot = \frac{\pi}{2}.<br/>\)

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

위키링크
참고할만한 자료