"월리스 곱 (Wallis product formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
==개요==
 
==개요==
  
* 1655년, 영국 수학자 월리스([http://en.wikipedia.org/wiki/John_Wallis John Wallis])는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다.
+
* 1655년, 영국 수학자 월리스([http://en.wikipedia.org/wiki/John_Wallis John Wallis])는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다. :<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
 +
$$\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}$$
  
<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
+
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]할때 이 월리스의 공식을 사용 :<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
  
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]할때 이 월리스의 공식을 사용
+
* 이는 다음을 말해준다 :<math>\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}</math>
  
<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
 
  
* 이는 다음을 말해준다.
 
 
<math>\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}</math>
 
 
 
 
 
<math>\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}</math>
 
  
 
 
 
 

2012년 11월 1일 (목) 19:29 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다. \[\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\]

$$\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}$$

  • 이는 다음을 말해준다 \[\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\]


 

 

월리스의 증명

  • 오일러 베타적분
    \(\int_0^{\pi}\sin^{p}\theta{d\theta}= B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{\Gamma(\frac{p}{2}+1)}\)

 

 

역사

  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트(1596년 3월-1650년 2월)
  • 뉴턴(1643년 1월-1727년 3월)

 

 

메모

 

 

관련된 항목들

 

 

사전형태의 자료

 

 

블로그