"이계 미분방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “* [http://math.dongascience.com/ 수학동아] * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] * [http://betterexplained.com/ BetterExplained]” 문자열을 “” 문자열로) |
||
115번째 줄: | 115번째 줄: | ||
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= | ||
* [http://navercast.naver.com/science/list 네이버 오늘의과학] | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
− | |||
− | |||
− |
2012년 11월 2일 (금) 07:23 판
이 항목의 스프링노트 원문주소
개요
- 선형방정식과 비선형방정식
이계미분방정식의 일계미분방정식으로의 변형
- \(y'' = f(x, y')\) 형태의 미분방정식
\(v=y'\) 으로 치환
\(v' = f(x, v)\) 를 얻는다 - \(y'' = g(y, y')\) 형태의 미분방정식
\(v=y'\) 으로 치환
\(y'' = \frac{dv}{dx}= \frac{dv}{dy}\frac{dy}{dx}=\frac{dv}{dy}v\)
\(\frac{dv}{dy}v = g(y,v)\) 를 얻는다
예
- \(2y''=3y^2\)
\(v=y'\) 으로 치환하자.
\(2\frac{dv}{dy}v = 3y^2\) 을 얻는다
\(v^2=y^3+C\)
\((\frac{dy}{dx})^2=y^3+C\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문