"자연수의 분할(partition)과 rank/crank 목록"의 두 판 사이의 차이
11번째 줄: | 11번째 줄: | ||
** 9의 분할인 {7,1,1}의 경우, rank=7-3=4 | ** 9의 분할인 {7,1,1}의 경우, rank=7-3=4 | ||
** 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0 | ** 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0 | ||
+ | * 분할수에 대해서는 [[200까지의 분할수 목록]] | ||
155번째 줄: | 156번째 줄: | ||
<h5>재미있는 사실</h5> | <h5>재미있는 사실</h5> | ||
− | * 네이버 지식인 | + | * In 1944, the crank was first hinted at by Freeman Dyson (2), then an undergraduate at Cambridge University. He had written an article, titled Some Guesses in the Theory of Partitions, for Eureka, the undergraduate mathematics journal of Cambridge. |
+ | * 네이버 지식인<br> | ||
+ | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
− | + | ||
− | + | <h5>[http://kin.search.naver.com/search.naver?where=kin_qna&query=%EC%97%AD%EC%82%AC%EC%88%98%ED%95%99%EC%82%AC%EC%97%B0%ED%91%9C%EB%A9%94%EB%AA%A8 역사]</h5> | |
− | [ | + | * [[수학사연표 (역사)|수학사연표]] |
167번째 줄: | 170번째 줄: | ||
− | <h5> | + | <h5>메모</h5> |
− | |||
− | |||
− | |||
− | |||
+ | |||
+ | |||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> |
2009년 12월 26일 (토) 06:21 판
이 항목의 스프링노트 원문주소
개요
- 분할의 rank = 분할에서 가장 큰 수 - 분할의 크기
- 예
- 9의 분할인 {7,1,1}의 경우, rank=7-3=4
- 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
- 분할수에 대해서는 200까지의 분할수 목록
목록
- 분할수와 분할의 목록
- 경우에 따라 분할에 따른 rank
1의 분할
- 분할수 = 1
- 틀:1
2의 분할
- 분할수 = 2
- {{2},{1,1}}
3의 분할
- 분할수 = 3
- {{3},{2,1},{1,1,1}}
4의 분할
- 분할수 = 5
- {{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}
5의 분할
- 분할수 = 7
- {{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}
6의 분할
- 분할수 = 11
- {{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
7의 분할
- 분할수 = 15
- {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
8의 분할
- 분할수 = 22
- {{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}
9의 분할
- 분할수 = 30
- {{9}, {8, 1}, {7, 2}, {7, 1, 1}, {6, 3}, {6, 2, 1}, {6, 1, 1, 1}, {5, 4}, {5, 3, 1}, {5, 2, 2}, {5, 2, 1, 1}, {5, 1, 1, 1, 1}, {4, 4, 1}, {4, 3, 2}, {4, 3, 1, 1}, {4, 2, 2, 1}, {4, 2, 1, 1, 1}, {4, 1, 1, 1, 1, 1}, {3, 3, 3}, {3, 3, 2, 1}, {3, 3, 1, 1, 1}, {3, 2, 2, 2}, {3, 2, 2, 1, 1}, {3, 2, 1, 1, 1, 1}, {3, 1, 1, 1, 1, 1, 1}, {2, 2, 2, 2, 1}, {2, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {2, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1}}
- 분할의 rank
{8,6,5,4,4,3,2,3,2,2,1,0,1,1,0,0,-1,-2,0,-1,-2,-1,-2,-3,-4,-3,-4,-5,-6,-8} - 분할과 rank, rank (mod 5)
{9}, rank=8≡3 (mod 5)
{8,1}, rank=6≡1 (mod 5)
{7,2}, rank=5≡0 (mod 5)
{7,1,1}, rank=4≡4 (mod 5)
{6,3}, rank=4≡4 (mod 5)
{6,2,1}, rank=3≡3 (mod 5)
{6,1,1,1}, rank=2≡2 (mod 5)
{5,4}, rank=3≡3 (mod 5)
{5,3,1}, rank=2≡2 (mod 5)
{5,2,2}, rank=2≡2 (mod 5)
{5,2,1,1}, rank=1≡1 (mod 5)
{5,1,1,1,1}, rank=0≡0 (mod 5)
{4,4,1}, rank=1≡1 (mod 5)
{4,3,2}, rank=1≡1 (mod 5)
{4,3,1,1}, rank=0≡0 (mod 5)
{4,2,2,1}, rank=0≡0 (mod 5)
{4,2,1,1,1}, rank=-1≡4 (mod 5)
{4,1,1,1,1,1}, rank=-2≡3 (mod 5)
{3,3,3}, rank=0≡0 (mod 5)
{3,3,2,1}, rank=-1≡4 (mod 5)
{3,3,1,1,1}, rank=-2≡3 (mod 5)
{3,2,2,2}, rank=-1≡4 (mod 5)
{3,2,2,1,1}, rank=-2≡3 (mod 5)
{3,2,1,1,1,1}, rank=-3≡2 (mod 5)
{3,1,1,1,1,1,1}, rank=-4≡1 (mod 5)
{2,2,2,2,1}, rank=-3≡2 (mod 5)
{2,2,2,1,1,1}, rank=-4≡1 (mod 5)
{2,2,1,1,1,1,1}, rank=-5≡0 (mod 5)
{2,1,1,1,1,1,1,1}, rank=-6≡4 (mod 5)
{1,1,1,1,1,1,1,1,1}, rank=-8≡2 (mod 5)
10의 분할
- 분할수 = 42
- {{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
11의 분할
- 분할수 = 56
- {{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}
12의 분할
- 분할수 = 77
- {{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
- 분할의 rank
{11,9,8,7,7,6,5,6,5,5,4,3,5,4,4,3,3,2,1,4,3,3,2,3,2,1,2,1,0,-1,2,1,2,1,0,1,1,0,-1,0,-1,-2,-3,1,0,0,-1,-2,0,-1,-1,-2,-3,-1,-2,-3,-4,-5,-1,-2,-3,-2,-3,-4,-5,-3,-4,-5,-6,-7,-4,-5,-6,-7,-8,-9,-11} - 분할과 rank, rank (mod 7)
{12}, rank=11≡4 (mod 7)
{11,1}, rank=9≡2 (mod 7)
{10,2}, rank=8≡1 (mod 7)
{10,1,1}, rank=7≡0 (mod 7)
{9,3}, rank=7≡0 (mod 7)
{9,2,1}, rank=6≡6 (mod 7)
{9,1,1,1}, rank=5≡5 (mod 7)
{8,4}, rank=6≡6 (mod 7)
{8,3,1}, rank=5≡5 (mod 7)
{8,2,2}, rank=5≡5 (mod 7)
{8,2,1,1}, rank=4≡4 (mod 7)
{8,1,1,1,1}, rank=3≡3 (mod 7)
{7,5}, rank=5≡5 (mod 7)
{7,4,1}, rank=4≡4 (mod 7)
{7,3,2}, rank=4≡4 (mod 7)
{7,3,1,1}, rank=3≡3 (mod 7)
{7,2,2,1}, rank=3≡3 (mod 7)
{7,2,1,1,1}, rank=2≡2 (mod 7)
{7,1,1,1,1,1}, rank=1≡1 (mod 7)
{6,6}, rank=4≡4 (mod 7)
{6,5,1}, rank=3≡3 (mod 7)
{6,4,2}, rank=3≡3 (mod 7)
{6,4,1,1}, rank=2≡2 (mod 7)
{6,3,3}, rank=3≡3 (mod 7)
{6,3,2,1}, rank=2≡2 (mod 7)
{6,3,1,1,1}, rank=1≡1 (mod 7)
{6,2,2,2}, rank=2≡2 (mod 7)
{6,2,2,1,1}, rank=1≡1 (mod 7)
{6,2,1,1,1,1}, rank=0≡0 (mod 7)
{6,1,1,1,1,1,1}, rank=-1≡6 (mod 7)
{5,5,2}, rank=2≡2 (mod 7)
{5,5,1,1}, rank=1≡1 (mod 7)
{5,4,3}, rank=2≡2 (mod 7)
{5,4,2,1}, rank=1≡1 (mod 7)
{5,4,1,1,1}, rank=0≡0 (mod 7)
{5,3,3,1}, rank=1≡1 (mod 7)
{5,3,2,2}, rank=1≡1 (mod 7)
{5,3,2,1,1}, rank=0≡0 (mod 7)
{5,3,1,1,1,1}, rank=-1≡6 (mod 7)
{5,2,2,2,1}, rank=0≡0 (mod 7)
{5,2,2,1,1,1}, rank=-1≡6 (mod 7)
{5,2,1,1,1,1,1}, rank=-2≡5 (mod 7)
{5,1,1,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,4,4}, rank=1≡1 (mod 7)
{4,4,3,1}, rank=0≡0 (mod 7)
{4,4,2,2}, rank=0≡0 (mod 7)
{4,4,2,1,1}, rank=-1≡6 (mod 7)
{4,4,1,1,1,1}, rank=-2≡5 (mod 7)
{4,3,3,2}, rank=0≡0 (mod 7)
{4,3,3,1,1}, rank=-1≡6 (mod 7)
{4,3,2,2,1}, rank=-1≡6 (mod 7)
{4,3,2,1,1,1}, rank=-2≡5 (mod 7)
{4,3,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,2,2,2}, rank=-1≡6 (mod 7)
{4,2,2,2,1,1}, rank=-2≡5 (mod 7)
{4,2,2,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,1,1,1,1,1,1}, rank=-4≡3 (mod 7)
{4,1,1,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,3,3,3}, rank=-1≡6 (mod 7)
{3,3,3,2,1}, rank=-2≡5 (mod 7)
{3,3,3,1,1,1}, rank=-3≡4 (mod 7)
{3,3,2,2,2}, rank=-2≡5 (mod 7)
{3,3,2,2,1,1}, rank=-3≡4 (mod 7)
{3,3,2,1,1,1,1}, rank=-4≡3 (mod 7)
{3,3,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,2,2,2,1}, rank=-3≡4 (mod 7)
{3,2,2,2,1,1,1}, rank=-4≡3 (mod 7)
{3,2,2,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,1,1,1,1,1,1,1}, rank=-6≡1 (mod 7)
{3,1,1,1,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,2,2,2,2}, rank=-4≡3 (mod 7)
{2,2,2,2,2,1,1}, rank=-5≡2 (mod 7)
{2,2,2,2,1,1,1,1}, rank=-6≡1 (mod 7)
{2,2,2,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,1,1,1,1,1,1,1,1}, rank=-8≡6 (mod 7)
{2,1,1,1,1,1,1,1,1,1,1}, rank=-9≡5 (mod 7)
{1,1,1,1,1,1,1,1,1,1,1,1}, rank=-11≡3 (mod 7)
재미있는 사실
- In 1944, the crank was first hinted at by Freeman Dyson (2), then an undergraduate at Cambridge University. He had written an article, titled Some Guesses in the Theory of Partitions, for Eureka, the undergraduate mathematics journal of Cambridge.
- 네이버 지식인
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Ramanujan's congruences and Dyson's crank
- George E. Andrews and Ken Ono, PNAS October 25, 2005 vol. 102 no. 43 15277
- Dyson's crank of a partition
- George E. Andrews and F. G. Garvan, Bull. Amer. Math. Soc. (N.S.) Volume 18, Number 2 (1988), 167-171
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/10.1073/pnas.0507844102.
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)