"자연수의 분할(partition)과 rank/crank 목록"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “관련도서 및 추천도서” 문자열을 “관련도서” 문자열로) |
||
207번째 줄: | 207번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> |
2012년 11월 1일 (목) 16:06 판
개요
- 분할의 rank = 분할에서 가장 큰 수 - 분할의 크기
- 예
- 9의 분할인 {7,1,1}의 경우, rank=7-3=4
- 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
- 분할의 crank
- 분할에서 가장 큰 수 (1이 포함되지 않는 분할의 경우)
- 분할에서 "1의개수"보다 큰 수 - 1의 개수 (1이 포함되는 경우)
- 예
- 9의 분할인 {7,1,1}의 경우, crank=1-2=-1
- 9의 분할인 {4,3,1,1}의 경우, crank=2-2=0
- 200까지의 분할수 목록 항목 참조
목록
- 분할수와 분할의 목록
- 경우에 따라 분할에 따른 rank
1의 분할
- 분할수 = 1
- {{1}}
2의 분할
- 분할수 = 2
- {{2},{1,1}}
3의 분할
- 분할수 = 3
- {{3},{2,1},{1,1,1}}
4의 분할
- 분할수 = 5
- {{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}
5의 분할
- 분할수 = 7
- {{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}
6의 분할
- 분할수 = 11
- {{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
- 분할의 rank
{5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5}≡ {5, 3, 2, 1, 1, 0, 10, 10, 9, 8, 6} (mod 11)
rank의 나머지에 7이 없고, 10이 두개 - 분할의 crank
{6, 0, 4, -1, 3, 1, -3, 2, -2, -4, -6} ≡ {6, 0, 4, 10, 3, 1, 8, 2, 9, 7, 5} (mod 11)
crank의 나머지는 고르게 분포되어 있음 - 분할과 rank, rank (mod 11), crank (mod 11)
{6}, rank=5≡5(mod 11), crank=6≡6(mod 11)
{5,1}, rank=3≡3(mod 11), crank=0≡0(mod 11)
{4,2}, rank=2≡2(mod 11), crank=4≡4(mod 11)
{4,1,1}, rank=1≡1(mod 11), crank=-1≡10(mod 11)
{3,3}, rank=1≡1(mod 11), crank=3≡3(mod 11)
{3,2,1}, rank=0≡0(mod 11), crank=1≡1(mod 11)
{3,1,1,1}, rank=-1≡10(mod 11), crank=-3≡8(mod 11)
{2,2,2}, rank=-1≡10(mod 11), crank=2≡2(mod 11)
{2,2,1,1}, rank=-2≡9(mod 11), crank=-2≡9(mod 11)
{2,1,1,1,1}, rank=-3≡8(mod 11), crank=-4≡7(mod 11)
{1,1,1,1,1,1}, rank=-5≡6(mod 11), crank=-6≡5(mod 11)
{4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5)
{4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5)
{4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5)
{4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5)
{3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5)
{3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5)
{3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5)
{3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5)
{3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5)
{3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5)
{3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5)
{2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5)
{2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5)
{2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5)
{2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5)
{1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5)
7의 분할
- 분할수 = 15
- {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
8의 분할
- 분할수 = 22
- {{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}
9의 분할
- 분할수 = 30
- {{9}, {8, 1}, {7, 2}, {7, 1, 1}, {6, 3}, {6, 2, 1}, {6, 1, 1, 1}, {5, 4}, {5, 3, 1}, {5, 2, 2}, {5, 2, 1, 1}, {5, 1, 1, 1, 1}, {4, 4, 1}, {4, 3, 2}, {4, 3, 1, 1}, {4, 2, 2, 1}, {4, 2, 1, 1, 1}, {4, 1, 1, 1, 1, 1}, {3, 3, 3}, {3, 3, 2, 1}, {3, 3, 1, 1, 1}, {3, 2, 2, 2}, {3, 2, 2, 1, 1}, {3, 2, 1, 1, 1, 1}, {3, 1, 1, 1, 1, 1, 1}, {2, 2, 2, 2, 1}, {2, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {2, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1}}
- 분할의 rank
{8,6,5,4,4,3,2,3,2,2,1,0,1,1,0,0,-1,-2,0,-1,-2,-1,-2,-3,-4,-3,-4,-5,-6,-8} - 분할의 crank
{9,0,7,-1,6,1,-2,5,1,5,-1,-3,1,4,0,2,-2,-5,3,2,-3,3,-1,-4,-6,3,-3,-5,-7,-9} - 분할과 rank, rank (mod 5), crank (mod 5)
{9}, rank=8≡3(mod 5), crank=9≡4(mod 5)
{8,1}, rank=6≡1(mod 5), crank=0≡0(mod 5)
{7,2}, rank=5≡0(mod 5), crank=7≡2(mod 5)
{7,1,1}, rank=4≡4(mod 5), crank=-1≡4(mod 5)
{6,3}, rank=4≡4(mod 5), crank=6≡1(mod 5)
{6,2,1}, rank=3≡3(mod 5), crank=1≡1(mod 5)
{6,1,1,1}, rank=2≡2(mod 5), crank=-2≡3(mod 5)
{5,4}, rank=3≡3(mod 5), crank=5≡0(mod 5)
{5,3,1}, rank=2≡2(mod 5), crank=1≡1(mod 5)
{5,2,2}, rank=2≡2(mod 5), crank=5≡0(mod 5)
{5,2,1,1}, rank=1≡1(mod 5), crank=-1≡4(mod 5)
{5,1,1,1,1}, rank=0≡0(mod 5), crank=-3≡2(mod 5)
{4,4,1}, rank=1≡1(mod 5), crank=1≡1(mod 5)
{4,3,2}, rank=1≡1(mod 5), crank=4≡4(mod 5)
{4,3,1,1}, rank=0≡0(mod 5), crank=0≡0(mod 5)
{4,2,2,1}, rank=0≡0(mod 5), crank=2≡2(mod 5)
{4,2,1,1,1}, rank=-1≡4(mod 5), crank=-2≡3(mod 5)
{4,1,1,1,1,1}, rank=-2≡3(mod 5), crank=-5≡0(mod 5)
{3,3,3}, rank=0≡0(mod 5), crank=3≡3(mod 5)
{3,3,2,1}, rank=-1≡4(mod 5), crank=2≡2(mod 5)
{3,3,1,1,1}, rank=-2≡3(mod 5), crank=-3≡2(mod 5)
{3,2,2,2}, rank=-1≡4(mod 5), crank=3≡3(mod 5)
{3,2,2,1,1}, rank=-2≡3(mod 5), crank=-1≡4(mod 5)
{3,2,1,1,1,1}, rank=-3≡2(mod 5), crank=-4≡1(mod 5)
{3,1,1,1,1,1,1}, rank=-4≡1(mod 5), crank=-6≡4(mod 5)
{2,2,2,2,1}, rank=-3≡2(mod 5), crank=3≡3(mod 5)
{2,2,2,1,1,1}, rank=-4≡1(mod 5), crank=-3≡2(mod 5)
{2,2,1,1,1,1,1}, rank=-5≡0(mod 5), crank=-5≡0(mod 5)
{2,1,1,1,1,1,1,1}, rank=-6≡4(mod 5), crank=-7≡3(mod 5)
{1,1,1,1,1,1,1,1,1}, rank=-8≡2(mod 5), crank=-9≡1(mod 5)
10의 분할
- 분할수 = 42
- {{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
11의 분할
- 분할수 = 56
- {{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}
12의 분할
- 분할수 = 77
- {{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
- 분할의 rank
{11,9,8,7,7,6,5,6,5,5,4,3,5,4,4,3,3,2,1,4,3,3,2,3,2,1,2,1,0,-1,2,1,2,1,0,1,1,0,-1,0,-1,-2,-3,1,0,0,-1,-2,0,-1,-1,-2,-3,-1,-2,-3,-4,-5,-1,-2,-3,-2,-3,-4,-5,-3,-4,-5,-6,-7,-4,-5,-6,-7,-8,-9,-11} - 분할과 rank, rank (mod 7)
{12}, rank=11≡4 (mod 7)
{11,1}, rank=9≡2 (mod 7)
{10,2}, rank=8≡1 (mod 7)
{10,1,1}, rank=7≡0 (mod 7)
{9,3}, rank=7≡0 (mod 7)
{9,2,1}, rank=6≡6 (mod 7)
{9,1,1,1}, rank=5≡5 (mod 7)
{8,4}, rank=6≡6 (mod 7)
{8,3,1}, rank=5≡5 (mod 7)
{8,2,2}, rank=5≡5 (mod 7)
{8,2,1,1}, rank=4≡4 (mod 7)
{8,1,1,1,1}, rank=3≡3 (mod 7)
{7,5}, rank=5≡5 (mod 7)
{7,4,1}, rank=4≡4 (mod 7)
{7,3,2}, rank=4≡4 (mod 7)
{7,3,1,1}, rank=3≡3 (mod 7)
{7,2,2,1}, rank=3≡3 (mod 7)
{7,2,1,1,1}, rank=2≡2 (mod 7)
{7,1,1,1,1,1}, rank=1≡1 (mod 7)
{6,6}, rank=4≡4 (mod 7)
{6,5,1}, rank=3≡3 (mod 7)
{6,4,2}, rank=3≡3 (mod 7)
{6,4,1,1}, rank=2≡2 (mod 7)
{6,3,3}, rank=3≡3 (mod 7)
{6,3,2,1}, rank=2≡2 (mod 7)
{6,3,1,1,1}, rank=1≡1 (mod 7)
{6,2,2,2}, rank=2≡2 (mod 7)
{6,2,2,1,1}, rank=1≡1 (mod 7)
{6,2,1,1,1,1}, rank=0≡0 (mod 7)
{6,1,1,1,1,1,1}, rank=-1≡6 (mod 7)
{5,5,2}, rank=2≡2 (mod 7)
{5,5,1,1}, rank=1≡1 (mod 7)
{5,4,3}, rank=2≡2 (mod 7)
{5,4,2,1}, rank=1≡1 (mod 7)
{5,4,1,1,1}, rank=0≡0 (mod 7)
{5,3,3,1}, rank=1≡1 (mod 7)
{5,3,2,2}, rank=1≡1 (mod 7)
{5,3,2,1,1}, rank=0≡0 (mod 7)
{5,3,1,1,1,1}, rank=-1≡6 (mod 7)
{5,2,2,2,1}, rank=0≡0 (mod 7)
{5,2,2,1,1,1}, rank=-1≡6 (mod 7)
{5,2,1,1,1,1,1}, rank=-2≡5 (mod 7)
{5,1,1,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,4,4}, rank=1≡1 (mod 7)
{4,4,3,1}, rank=0≡0 (mod 7)
{4,4,2,2}, rank=0≡0 (mod 7)
{4,4,2,1,1}, rank=-1≡6 (mod 7)
{4,4,1,1,1,1}, rank=-2≡5 (mod 7)
{4,3,3,2}, rank=0≡0 (mod 7)
{4,3,3,1,1}, rank=-1≡6 (mod 7)
{4,3,2,2,1}, rank=-1≡6 (mod 7)
{4,3,2,1,1,1}, rank=-2≡5 (mod 7)
{4,3,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,2,2,2}, rank=-1≡6 (mod 7)
{4,2,2,2,1,1}, rank=-2≡5 (mod 7)
{4,2,2,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,1,1,1,1,1,1}, rank=-4≡3 (mod 7)
{4,1,1,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,3,3,3}, rank=-1≡6 (mod 7)
{3,3,3,2,1}, rank=-2≡5 (mod 7)
{3,3,3,1,1,1}, rank=-3≡4 (mod 7)
{3,3,2,2,2}, rank=-2≡5 (mod 7)
{3,3,2,2,1,1}, rank=-3≡4 (mod 7)
{3,3,2,1,1,1,1}, rank=-4≡3 (mod 7)
{3,3,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,2,2,2,1}, rank=-3≡4 (mod 7)
{3,2,2,2,1,1,1}, rank=-4≡3 (mod 7)
{3,2,2,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,1,1,1,1,1,1,1}, rank=-6≡1 (mod 7)
{3,1,1,1,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,2,2,2,2}, rank=-4≡3 (mod 7)
{2,2,2,2,2,1,1}, rank=-5≡2 (mod 7)
{2,2,2,2,1,1,1,1}, rank=-6≡1 (mod 7)
{2,2,2,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,1,1,1,1,1,1,1,1}, rank=-8≡6 (mod 7)
{2,1,1,1,1,1,1,1,1,1,1}, rank=-9≡5 (mod 7)
{1,1,1,1,1,1,1,1,1,1,1,1}, rank=-11≡3 (mod 7)
재미있는 사실
- In 1944, the crank was first hinted at by Freeman Dyson (2), then an undergraduate at Cambridge University. He had written an article, titled Some Guesses in the Theory of Partitions, for Eureka, the undergraduate mathematics journal of Cambridge.
- 네이버 지식인
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Ramanujan's congruences and Dyson's crank
- George E. Andrews and Ken Ono, PNAS October 25, 2005 vol. 102 no. 43 15277
- Dyson's crank of a partition
- George E. Andrews and F. G. Garvan, Bull. Amer. Math. Soc. (N.S.) Volume 18, Number 2 (1988), 167-171
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/10.1073/pnas.0507844102.
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)