"정다면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
147번째 줄: 147번째 줄:
 
<math>2-\frac{2}{n}=\sum_{C}(1-\frac{1}{v_{C}})</math>
 
<math>2-\frac{2}{n}=\sum_{C}(1-\frac{1}{v_{C}})</math>
  
<math>n\geq 2</math> 이므로 
+
<math>n\geq 2</math> 이고, <math>1\leq 2-\frac{2}{n}< 2</math>,  <math>\frac{1}{2}\leq (1-\frac{1}{v_{C}}) < 1</math> 이므로,  총 궤도의 개수는 2 또는 3이 된다. 
 +
 
 +
궤도가 2개인 경우
 +
 
 +
 <math>\frac{2}{n}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \iff </math><math>\frac{2}{n}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \iff 2=\frac{n}{v_{1}}+\frac{n}{v_{2}}=n_1+n_2</math>
 +
 
 +
따라서 <math>n_1=n_2=1</math> 을 얻는다.
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 

2009년 8월 21일 (금) 17:02 판

간단한 소개
  • 볼록 다면체 중에서 모든 면이 합동인 정다각형으로 이루어져 있으며, 각 꼭지점에서 만나는 면의 개수가 같은 도형

  • 다섯개만이 존재
    • 정사면체
    • 정육면체
    • 정팔면체
    • 정십이면체
    • 정이십면체
다면체 그림 V E F V-E+F 한점에서의 외각 A 외각의 총합 V × A
정사면체 [[|Tetrahedron]] 4 6 4 4-6+4=2 \(2\pi-3\times\frac{\pi}{3}=\pi\) \(4\times\pi=4\pi\)
정육면체 [[|Hexahedron (cube)]] 8 12 6 8-12+6=2 \(2\pi-3\times\frac{\pi}{2}=\frac{\pi}{2}\) \(8\times\frac{\pi}{2}=4\pi\)
정팔면체 [[|Octahedron]] 6 12 8 6-12+8=2 \(2\pi-4\times\frac{\pi}{3}=\frac{2\pi}{3}\) \(6\times\frac{2\pi}{3}=4\pi\)
정십이면체 [[|Dodecahedron]] 20 30 12 20-30+12=2 \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\) \(20\times\frac{\pi}{5}=4\pi\)
정이십면체 [[|Icosahedron]] 12 30 20 12-30+20=2 \(2\pi-5\times\frac{\pi}{3}=\frac{\pi}{3}\) \(12\times\frac{\pi}{3}=4\pi\)

 

분류에 대한 기하학적 증명

 

 

 

오일러의 정리를 사용하는 증명

(증명)

정다면체가 F개의 정p각형으로 구성되어 있고, 각 꼭지점점에서 q개가 만난다고 하자.

꼭지점의 개수는

\(V = \frac{pF}{q}\)

변의 개수는

\(E = \frac{pF}{2}\)

여기서

\(n = qV = pF = 2E\) 로 두자.

오일러의 정리로부터,

\(2pq\times (V-E+F) = 2pq\times 2\)

\(2pn - pqn + 2qn= 4 pq\)

\(2pn + 2qn= 4 pq + pqn\)

양변을 \(2pqn\) 으로 나누면,

\(\frac{1}{q} + \frac{1}{p}= \frac{2}{n} + \frac{1}{2}\)

\(\frac{1}{p} + \frac{1}{q} > \frac{1}{2}\)

부등식을 풀면, \(\{3, 3\}, \{4, 3\},\{3, 4\},\{5, 3\},\{3,5\}\) 다섯개의 해를 얻는다.

 

 

군론을 통한 증명

\(\Gamma\) 를 크기가 n인 3차원 회전군이라 하고, 정다면체의 꼭지점들은 단위구 위에 놓여있다고 가정하자.. 

각각의 원소에 대하여, 회전축상에 놓인 구면위의 두 점을 극점이라고 부르자.

각 극점 p에 대하여, p를 고정하는 부동부분군은 크기가 \(v_p\geq 2\)인 순환군이 된다.

\(\Gamma\)에 의한 p의 궤도의 집합을 \(C_p\)라 하면, \(|C_p|=\frac{n}{v_p}\)가 된다.

이제 집합 \(S=\{(g,p)|g\neq 1\in \Gamma, gp=p\}\) 의 원소의 개수를 두 가지 방법으로 센다.

1) 항등원이 아닌 각각의 원소는 두 개의 극점을 가지므로, \(|S|=2(n-1)\)

2) 각각의 극점 p에 대하여, p를 고정하는 항등원이 아닌 원소의 개수는 \(v_p-1\) 이므로, \(|S|=\sum_{p}(v_p-1)\)

극점들을 움직이는 \(\Gamma\)에 의한 궤도 \(C\)의 크기를 \(n_{C}\)라 하면, 위에서 얻은 두 식을 다음과 같이 쓸 수 있다.

\(2(n-1)=\sum_{C}n_{C}(v_{C}-1)\)

여기서 \(v_C\)는 궤도 \(C\)의 원소 \(p\)에 대하여 \(v_p\)를 뜻하고, 이는 궤도 안의 모든 점에 대하여 같은 값을 가지므로 잘 정의되어 있다.

위 식의 양변을 \(n\)으로 나누면, 다음을 얻는다.

\(2-\frac{2}{n}=\sum_{C}(1-\frac{1}{v_{C}})\)

\(n\geq 2\) 이고, \(1\leq 2-\frac{2}{n}< 2\),  \(\frac{1}{2}\leq (1-\frac{1}{v_{C}}) < 1\) 이므로,  총 궤도의 개수는 2 또는 3이 된다. 

궤도가 2개인 경우

 \(\frac{2}{n}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \iff \)\(\frac{2}{n}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \iff 2=\frac{n}{v_{1}}+\frac{n}{v_{2}}=n_1+n_2\)

따라서 \(n_1=n_2=1\) 을 얻는다.

 

 

 

 

 

 

플라톤과 정다면체

플라톤은 티마이오스에서, 우주가 4가지의 원소로 구성되어 있다고 했다. 불;공기;물 그리고 땅이 그것이다.
정다면체를 영어로 Platonic Solids 라고 한다. 플라톤이 직접 이것을 발견한 것은 아니었지만, 이렇게 플라톤의 이름이 여기에 붙게 된 것은 아마도, 플라톤이 위의 티마이오스에서, 각각의 원소를 각각의 정다면체에 대응시켜 놓았기 때문일 것이다. 불=정사면체, 공기=정팔면체, 물=정이십면체, 땅=정육면체 그리고 하나 남은 정십이면체는 우주전체이다.

 

 

 

케플러와 정다면체

케플러는 행성의 운동에 대한 여러가지 가설들을 만들고 테스트했는데, 그 중에 재밌는 것이 있다. 케플러의 시대만 하더라도, 알려진 행성이 여섯개였다고 한다. 수성, 금성, 지구, 화성, 목성, 토성이 바로 그것들이다. 여기서 케플러는 정다면체가 다섯개밖에 없다는 사실을 우연이 아니라고 생각했다.
먼저 큰 구를 하나 가져온다. 토성의 궤도가 이 구에 놓인다. 그 다음 그 구에 내접하는 정육면체를 그리고, 다시 정육면체에 내접하는 구를 그린다. 이 구에 목성의 궤도가 놓인다. 그 다음 구에 내접하는 정사면체와 정사면체에 내접하는 구를 그린다. 이 구에 화성의 궤도가 놓인다. 그 다음 정십이면체, 정이십면체, 마지막으로 정팔면체를 그려나가면서, 지구, 금성, 수성의 궤도를 만들어 간다. 케플러는 정다면체가 다섯개밖에 없다는 사실이 여섯개의 행성이 존재한다는 사실을 설명할 것이라 생각했다. 그러나 아마도 그는 관측결과를 바탕으로 행성운동에 대한 법칙을 세울 줄 알았던 위대한 과학자였으므로, 곧 관측 결과들이 궤도의 거리들과 일치하지 않는다는 점을 곧 깨달았을 것이다. 물론 나중에 천왕성이 발견됨으로써, 그의 이론은 산산조각이 났다.

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

이미지 검색

 

동영상