"케일리 뫼비우스 변환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지에 _1.gif 파일을 등록하셨습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5> | ||
+ | |||
+ | * [[케일리 뫼비우스 변환]] | ||
10번째 줄: | 12번째 줄: | ||
* 복소 상반 평면을 단위원으로 보내는 등각사상 | * 복소 상반 평면을 단위원으로 보내는 등각사상 | ||
− | + | [-3, 3]×[0, 6] 의 이미지 | |
+ | |||
+ | [https://lh4.googleusercontent.com/AyWMFzY3PWvbNCS4gDs4IRFNO9AoHo4Lz4Zgo7HqVznyVS6lGK8A4tH7wAerpZd-7_CW-H0arJN9Q7g ] | ||
− | + | [/pages/11286558/attachments/6148670 _1.gif] | |
48번째 줄: | 52번째 줄: | ||
* [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem]] | * [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem]] | ||
+ | * [[뫼비우스 변환군과 기하학]] | ||
2012년 7월 20일 (금) 15:04 판
이 항목의 수학노트 원문주소
개요
- 다음과 같이 정의되는 뫼비우스 변환의 예
\(f(z)=\frac{z-i}{z+i}\) - 복소 상반 평면을 단위원으로 보내는 등각사상
[-3, 3]×[0, 6] 의 이미지
[/pages/11286558/attachments/6148670 _1.gif]
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxNVZkY0NrcnpvbG8/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문