"타원 내의 격자점 개수 문제"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">간단한 소개</h5> | ||
− | * 타원 <math>Ax^2+Bxy+Cy^2=T</math> , <math>T>0</math><br> | + | * 타원 <math>Ax^2+Bxy+Cy^2=T</math> , <math>A>0</math>, <math>C>0</math>, <math>T>0</math><br> |
− | ** 면적은 <br> | + | ** 면적은 <math>\frac{2\pi T}{\sqrt{\Delta}}</math><br> |
+ | ** <math>\frac{2\pi T}{\sqrt{\Delta}}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | (정리) | ||
+ | |||
+ | 타원 <math>Ax^2+Bxy+Cy^2=T</math> , <math>A>0</math>, <math>C>0</math>, <math>T>0</math> 의 내부에 있는 정수격자점의 개수 <math>N</math>에 대하여, 다음이 성립한다. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>|N-\frac{2\pi T}{\sqrt{\Delta}}| \approx O(\sqrt{T})</math> | ||
2009년 10월 30일 (금) 12:59 판
이 항목의 스프링노트 원문주소
간단한 소개
- 타원 \(Ax^2+Bxy+Cy^2=T\) , \(A>0\), \(C>0\), \(T>0\)
- 면적은 \(\frac{2\pi T}{\sqrt{\Delta}}\)
- \(\frac{2\pi T}{\sqrt{\Delta}}\)
- 면적은 \(\frac{2\pi T}{\sqrt{\Delta}}\)
(정리)
타원 \(Ax^2+Bxy+Cy^2=T\) , \(A>0\), \(C>0\), \(T>0\) 의 내부에 있는 정수격자점의 개수 \(N\)에 대하여, 다음이 성립한다.
\(|N-\frac{2\pi T}{\sqrt{\Delta}}| \approx O(\sqrt{T})\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)