"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 1번째 줄: | 1번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>  | 
| 5번째 줄: | 5번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>  | 
* [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]] 의 일반화<br>  | * [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]] 의 일반화<br>  | ||
| 13번째 줄: | 13번째 줄: | ||
| − | <h5 style="line-height: 2em; margin  | + | <h5 style="line-height: 2em; margin: 0px;">정의</h5>  | 
<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}</math>  | <math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}</math>  | ||
| 23번째 줄: | 23번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>  | 
| 34번째 줄: | 34번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>  | 
| 46번째 줄: | 46번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>  | 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false  | * http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false  | ||
| 56번째 줄: | 56번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>  | 
* [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>  | * [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>  | ||
| 65번째 줄: | 65번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>  | 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | ||
| 78번째 줄: | 78번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>  | 
* http://ko.wikipedia.org/wiki/  | * http://ko.wikipedia.org/wiki/  | ||
| 85번째 줄: | 85번째 줄: | ||
* http://www.wolframalpha.com/input/?i=  | * http://www.wolframalpha.com/input/?i=  | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]  | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]  | ||
| − | * [http://www.research.att.com/  | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>  | 
** http://www.research.att.com/~njas/sequences/?q=  | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| 92번째 줄: | 92번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>  | 
| − | * [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey]  | + | *   <br>[http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey] Douglas Bowman, David M. Bradley, 5 Oct 2003<br>   | 
| − | + | *   <br>[http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$] D. J. Broadhurst, 1998<br>   | |
| − | * [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$]  | ||
| − | |||
| − | * [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants]  | + | * [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>  | 
| − | |||
| − | * [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms]  | + | *   <br>[http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms] Hain, Richard, 1992<br>   | 
| − | |||
*  The classical polylogarithms, algebraic K-theory and ζ. F. (n),<br>  | *  The classical polylogarithms, algebraic K-theory and ζ. F. (n),<br>  | ||
** Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135  | ** Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135  | ||
| 118번째 줄: | 114번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>  | 
*  도서내검색<br>  | *  도서내검색<br>  | ||
| 132번째 줄: | 128번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>  | 
*  네이버 뉴스 검색 (키워드 수정)<br>  | *  네이버 뉴스 검색 (키워드 수정)<br>  | ||
| 143번째 줄: | 139번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>  | 
*  구글 블로그 검색<br>  | *  구글 블로그 검색<br>  | ||
2011년 2월 23일 (수) 17:43 판
이 항목의 스프링노트 원문주소
개요
- 다이로그 함수(dilogarithm ) 의 일반화
 
정의
\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}\)
\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
 - 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
 - 발음사전 http://www.forvo.com/search/
 - 대한수학회 수학 학술 용어집
 - 남·북한수학용어비교
 - 대한수학회 수학용어한글화 게시판
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/Polylogarithm
 - http://en.wikipedia.org/wiki/
 - http://www.wolframalpha.com/input/?i=
 - NIST Digital Library of Mathematical Functions
 - The On-Line Encyclopedia of Integer Sequences
 
관련논문
-  
Multiple Polylogarithms: A Brief Survey Douglas Bowman, David M. Bradley, 5 Oct 2003
 -  
Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$ D. J. Broadhurst, 1998
 
- On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 
-  
Classical Polylogarithms Hain, Richard, 1992
 - The classical polylogarithms, algebraic K-theory and ζ. F. (n),
- Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 
 
- Some wonderful formulas ... an introduction to polylogarithms
- A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
 
 - http://www.jstor.org/action/doBasicSearch?Query=polylogarithm
 - http://www.jstor.org/action/doBasicSearch?Query=
 - http://www.ams.org/mathscinet
 - http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9
 
관련도서
- 도서내검색
 - 도서검색
 
관련기사
- 네이버 뉴스 검색 (키워드 수정)