"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		이 항목의 스프링노트 원문주소==
 
 
		
	
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)  | 
				Pythagoras0 (토론 | 기여)  잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				||
| 1번째 줄: | 1번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==  | 
* [[폴리로그 함수(polylogarithm)]]<br>  | * [[폴리로그 함수(polylogarithm)]]<br>  | ||
| 7번째 줄: | 7번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==  | 
* [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]] 의 일반화<br>  | * [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]] 의 일반화<br>  | ||
| 18번째 줄: | 18번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px;">정의  | + | <h5 style="line-height: 2em; margin: 0px;">정의==  | 
<math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}</math>  | <math>\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}</math>  | ||
| 28번째 줄: | 28번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px;">로그함수  | + | <h5 style="line-height: 2em; margin: 0px;">로그함수==  | 
* [[로그 함수]]<br><math>-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots</math><br>  | * [[로그 함수]]<br><math>-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots</math><br>  | ||
| 36번째 줄: | 36번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==  | 
| 48번째 줄: | 48번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==  | 
* http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities<br>  | * http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities<br>  | ||
| 63번째 줄: | 63번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==  | 
* [[L-함수의 값 구하기 입문]]<br>  | * [[L-함수의 값 구하기 입문]]<br>  | ||
| 73번째 줄: | 73번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==  | 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=  | ||
| 86번째 줄: | 86번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==  | 
* http://ko.wikipedia.org/wiki/  | * http://ko.wikipedia.org/wiki/  | ||
| 100번째 줄: | 100번째 줄: | ||
| − | ==리뷰논문, 에세이, 강의노트  | + | ==리뷰논문, 에세이, 강의노트==  | 
* John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008  | * John R. Rhodes [http://www.mathematik.hu-berlin.de/%7Ekreimer/Polylogarithms.pdf Polylogarithms] ,2008  | ||
| 111번째 줄: | 111번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==  | 
*   <br>  | *   <br>  | ||
2012년 11월 1일 (목) 13:14 판
이 항목의 스프링노트 원문주소==
 
 
개요==
 
 
 
정의==
\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\)
\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\)
 
 
로그함수==
- 로그 함수
\(-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\)
 
 
 
역사==
 
 
 
메모==
- http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
- Functional equations of polylogarithms Herbert Gangl
 
- http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf
 
- http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf
 
- Math Overflow
 
 
 
관련된 항목들==
 
 
수학용어번역==
 
 
사전 형태의 자료==
 
 
리뷰논문, 에세이, 강의노트
- John R. Rhodes Polylogarithms ,2008
 
- Richard Hain, Classical Polylogarithms , 1992
 
 
 
 
관련논문==
-  
 
- Multiple Polylogarithms: A Brief Survey Douglas Bowman, David M. Bradley, 5 Oct 2003
 
- Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$ D. J. Broadhurst, 1998
 
- On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 
- Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
 
- The classical polylogarithms, algebraic K-theory and ζ. F. (n), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 
- Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
 
- http://www.jstor.org/action/doBasicSearch?Query=polylogarithm
 
- http://www.jstor.org/action/doBasicSearch?Query=
 
- http://www.ams.org/mathscinet
 
- http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9
 
- 로그 함수
\(-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\) 
- http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 - Functional equations of polylogarithms Herbert Gangl
 - http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf
 - http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf
 - Math Overflow
 
-  
 - Multiple Polylogarithms: A Brief Survey Douglas Bowman, David M. Bradley, 5 Oct 2003
 - Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$ D. J. Broadhurst, 1998
 - On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 - Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
 - The classical polylogarithms, algebraic K-theory and ζ. F. (n), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 - Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
 - http://www.jstor.org/action/doBasicSearch?Query=polylogarithm
 - http://www.jstor.org/action/doBasicSearch?Query=
 - http://www.ams.org/mathscinet
 - http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9