"행렬식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
53번째 줄: | 53번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | * [[행렬의 대각합 (trace)]] | |
* [[벡터의 외적(cross product)]] | * [[벡터의 외적(cross product)]] | ||
* [[외대수(exterior algebra)와 겹선형대수(multilinear algebra)]] | * [[외대수(exterior algebra)와 겹선형대수(multilinear algebra)]] |
2012년 11월 28일 (수) 15:51 판
이 항목의 스프링노트 원문주소
개요
- 교대 겹선형 k-형식(k-alternating form)
정의
- n x n 행렬 \(A=(a_{ij})\)에 대하여, 다음과 같이 행렬식을 정의
\(\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}\)
여기서 \(S_n\)은 대칭군 (symmetric group)
- n=2
\(a_{1,1} a_{2,2}-a_{1,2} a_{2,1}\) - n=3
\(a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1}\)
예
역사
메모
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxcE4yakhZTzBDYUE/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록