"MathJax"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→참조 예) |
Pythagoras0 (토론 | 기여) |
||
21번째 줄: | 21번째 줄: | ||
==newcommand 사용 예== | ==newcommand 사용 예== | ||
+ | |||
+ | <!-- some LaTeX macros we want to use: --> | ||
+ | $ | ||
+ | \newcommand{\Re}{\mathrm{Re}\,} | ||
+ | \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} | ||
+ | $ | ||
+ | |||
+ | We consider, for various values of $s$, the $n$-dimensional integral | ||
+ | \begin{align} | ||
+ | \label{def:Wns} | ||
+ | W_n (s) | ||
+ | &:= | ||
+ | \int_{[0, 1]^n} | ||
+ | \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} | ||
+ | \end{align} | ||
+ | which occurs in the theory of uniform random walk integrals in the plane, | ||
+ | where at each step a unit-step is taken in a random direction. As such, | ||
+ | the integral \eqref{def:Wns} expresses the $s$-th moment of the distance | ||
+ | to the origin after $n$ steps. | ||
+ | |||
+ | By experimentation and some sketchy arguments we quickly conjectured and | ||
+ | strongly believed that, for $k$ a nonnegative integer | ||
+ | \begin{align} | ||
+ | \label{eq:W3k} | ||
+ | W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. | ||
+ | \end{align} | ||
+ | Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. | ||
+ | The reason for \eqref{eq:W3k} was long a mystery, but it will be explained | ||
+ | at the end of the paper. | ||
+ | |||
<!-- some LaTeX macros we want to use: --> | <!-- some LaTeX macros we want to use: --> | ||
$ | $ |
2012년 10월 29일 (월) 07:56 판
관련링크
문서 구조
- item 1
- definition 1
- item 2
- definition 2-1
- definition 2-2
참조 예
- 맥스웰 방정식의 벡터 해석학적 표현
\[\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}\] \[\int_{C} \mathbf{E}\cdot\,d\mathbf{r} =-\frac{d}{dt}\iint_{S} \mathbf{B}\cdot\,d\mathbf{S}\label{far} \]
- \ref{gau}를 가우스 법칙이라 한다
- \ref{far}를 패러데이 법칙이라 한다
newcommand 사용 예
$
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.
$
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.