"디리클레 L-함수의 미분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
12번째 줄: | 12번째 줄: | ||
+ | |||
+ | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">리만제타함수</h5> | ||
+ | |||
+ | * [[리만제타함수]]<br>[[리만제타함수|]]<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math><br> | ||
2010년 5월 27일 (목) 03:26 판
이 항목의 스프링노트 원문주소
개요
리만제타함수
- 리만제타함수
[[리만제타함수|]]\(\zeta'(0)=-\log{\sqrt{2\pi}}\)
디리클레 L-함수의 미분
- \(d_K\)를 판별식으로 갖는 복소이차수체 \(K\)에 대하여, 디리클레 L-함수는 다음을 만족시킴
\(L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\)
예
- 디리클레 베타함수
\(K=\mathbb{Q}(i)\)
\(\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\) - \(K=\mathbb{Q}(\omega)\), \(\omega^2+\omega+1=0\)
\(L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)