"가우스 합과 데데킨트 합의 관계"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
9번째 줄: 9번째 줄:
 
==개요==
 
==개요==
  
* [[가우스 합]]<br><math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math><br>
+
* [[가우스 합]]:<math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math><br>
*    [[데데킨트 합]]<br><math>s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1}  \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)</math><br>
+
*    [[데데킨트 합]]:<math>s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1}  \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)</math><br>
 
* 둘 사이의 관계
 
* 둘 사이의 관계
  
20번째 줄: 20번째 줄:
  
 
* <math>ac</math>가 짝수인 서로 소인 정수a,c>0 를 생각하자
 
* <math>ac</math>가 짝수인 서로 소인 정수a,c>0 를 생각하자
*  데데킨트합<br><math>\operatorname{Ddk}(a,c)=\frac{1}{4 c}\sum _{n=0}^{c-1} \cot \left(\frac{\pi  (2 n+1)}{2 c}\right) \cot \left(\pi  \left(\frac{a (2 n+1)}{2 c}+\frac{1}{2}\right)\right)</math><br>
+
*  데데킨트합:<math>\operatorname{Ddk}(a,c)=\frac{1}{4 c}\sum _{n=0}^{c-1} \cot \left(\frac{\pi  (2 n+1)}{2 c}\right) \cot \left(\pi  \left(\frac{a (2 n+1)}{2 c}+\frac{1}{2}\right)\right)</math><br>
*  가우스합<br><math>\operatorname{Ga}(a,c)=\frac{1}{\sqrt{c}}\sum _{r=0}^{c-1} \exp \left(\frac{i \pi  a r^2}{c}\right)</math><br>
+
*  가우스합:<math>\operatorname{Ga}(a,c)=\frac{1}{\sqrt{c}}\sum _{r=0}^{c-1} \exp \left(\frac{i \pi  a r^2}{c}\right)</math><br>
 
*  remark<br> 이 정의는 위에서의 정의와는 다르다<br>
 
*  remark<br> 이 정의는 위에서의 정의와는 다르다<br>
  
42번째 줄: 42번째 줄:
 
 
 
 
  
* [[자코비 삼중곱(Jacobi triple product)]]<br><math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math><br>
+
* [[자코비 삼중곱(Jacobi triple product)]]:<math>\sum_{n=-\infty}^\infty  z^{n}q^{n^2}= \prod_{m=1}^\infty  \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math><br>
 
* <math>z=1</math> 인 경우
 
* <math>z=1</math> 인 경우
  

2013년 1월 12일 (토) 09:10 판

이 항목의 수학노트 원문주소

 

 

개요

  • 가우스 합\[S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\]
  •   데데킨트 합\[s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\]
  • 둘 사이의 관계

 

 

정의

  • \(ac\)가 짝수인 서로 소인 정수a,c>0 를 생각하자
  • 데데킨트합\[\operatorname{Ddk}(a,c)=\frac{1}{4 c}\sum _{n=0}^{c-1} \cot \left(\frac{\pi (2 n+1)}{2 c}\right) \cot \left(\pi \left(\frac{a (2 n+1)}{2 c}+\frac{1}{2}\right)\right)\]
  • 가우스합\[\operatorname{Ga}(a,c)=\frac{1}{\sqrt{c}}\sum _{r=0}^{c-1} \exp \left(\frac{i \pi a r^2}{c}\right)\]
  • remark
    이 정의는 위에서의 정의와는 다르다

 

 

가우스 합과 데데킨트 합의 관계

  • \(\operatorname{Ga}(a,c)=\exp(-\pi i \operatorname{Ddk}(a,c))\)

 

 

 

메모

 

 

\(\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2\)

 

 

 

 

 

\(\sqrt{t}\theta(\frac{p}{q}+it)\sim \frac{1}{q}S(p,q)=\frac{1}{q}\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)

 

\(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)

 

 

  • asymptotic analysis of basic hypergeometric series
  • asymptotic analysis of modular function

 

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문