"거듭제곱근 체확장(radical extension)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
23번째 줄: 23번째 줄:
  
 
*  풀어쓰면 다음과 같다<br> 원소 <math>b_1\in F</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>a_1=\sqrt[n_1]b_1</math> 를 추가하여 얻어지는 체확장 <math>F_1=F(a_1)=F(\sqrt[n_1]b_1)</math><br> 원소 <math>b_2\in F_1</math>와 자연수 <math>n_2</math>에 대하여, 거듭제곱근 <math>a_2=\sqrt[n_2]b_2</math> 를 추가하여 얻어지는 체확장 <math>F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)</math><br> 이러한 체확장을 유한번 반복하여 얻어지는  <math>F=F_0</math>의 체확장을 거듭제곱근 체확장이라 한다<br>
 
*  풀어쓰면 다음과 같다<br> 원소 <math>b_1\in F</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>a_1=\sqrt[n_1]b_1</math> 를 추가하여 얻어지는 체확장 <math>F_1=F(a_1)=F(\sqrt[n_1]b_1)</math><br> 원소 <math>b_2\in F_1</math>와 자연수 <math>n_2</math>에 대하여, 거듭제곱근 <math>a_2=\sqrt[n_2]b_2</math> 를 추가하여 얻어지는 체확장 <math>F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)</math><br> 이러한 체확장을 유한번 반복하여 얻어지는  <math>F=F_0</math>의 체확장을 거듭제곱근 체확장이라 한다<br>
*  예<br><math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)</math><br><math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})</math><br>
+
*  예:<math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)</math>:<math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})</math><br>
  
 
* [[정다각형의 작도]], [[5차방정식과 근의 공식]] 에서 중요하게 사용되는 개념이다<br>
 
* [[정다각형의 작도]], [[5차방정식과 근의 공식]] 에서 중요하게 사용되는 개념이다<br>
35번째 줄: 35번째 줄:
 
* 갈루아 군의 정의는 [[갈루아 이론|갈루아 이론]] 항목을 참조
 
* 갈루아 군의 정의는 [[갈루아 이론|갈루아 이론]] 항목을 참조
 
* 체 F가 primitive root of unity 를 가진다고 하자. 
 
* 체 F가 primitive root of unity 를 가진다고 하자. 
*  F의 거듭제곱근 체확장 <math>K=F(\sqrt[n]a)</math> 의 갈루아군은 크기가 n인 [[순환군]]이다<br><math>\text{Gal}(K/F)\cong C_n</math><br>
+
*  F의 거듭제곱근 체확장 <math>K=F(\sqrt[n]a)</math> 의 갈루아군은 크기가 n인 [[순환군]]이다:<math>\text{Gal}(K/F)\cong C_n</math><br>
  
 
 
 
 

2013년 1월 12일 (토) 09:11 판

이 항목의 스프링노트 원문주소

 

 

 

개요

 

 

 

거듭제곱근 체확장(radical extension)

  • 기본체 \(F=F_0\)
  • 다음조건을 만족시키는 \(F\)의 체확장 \(K=F(a_1,a_2,\cdots,a_r)\)를 거듭제곱근 체확장이라 한다
    자연수 \(n_1,\cdots,n_r\)이 존재하여, \(a_1^{n_1}\in F\) 이고 \(1<i\leq r\)에 대하여 \(a_i^{n_i} \in F(a_1,a_2,\cdots,a_{i-1})\)
  • 풀어쓰면 다음과 같다
    원소 \(b_1\in F\)와 자연수 \(n_1\)에 대하여, 거듭제곱근 \(a_1=\sqrt[n_1]b_1\) 를 추가하여 얻어지는 체확장 \(F_1=F(a_1)=F(\sqrt[n_1]b_1)\)
    원소 \(b_2\in F_1\)와 자연수 \(n_2\)에 대하여, 거듭제곱근 \(a_2=\sqrt[n_2]b_2\) 를 추가하여 얻어지는 체확장 \(F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)\)
    이러한 체확장을 유한번 반복하여 얻어지는  \(F=F_0\)의 체확장을 거듭제곱근 체확장이라 한다
  • 예\[\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)\]\[\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})\]

 

 

거듭제곱근 체확장의 갈루아군

  • 갈루아 군의 정의는 갈루아 이론 항목을 참조
  • 체 F가 primitive root of unity 를 가진다고 하자. 
  • F의 거듭제곱근 체확장 \(K=F(\sqrt[n]a)\) 의 갈루아군은 크기가 n인 순환군이다\[\text{Gal}(K/F)\cong C_n\]

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 


 

 


 

 


 

 

블로그