"공변미분(covariant derivative)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
16번째 줄: 16번째 줄:
  
 
* <math>X=X^{i}\frac{\partial}{\partial x^{i}}</math>, <math>Y=Y^{i}\frac{\partial}{\partial x^{i}}</math><br>
 
* <math>X=X^{i}\frac{\partial}{\partial x^{i}}</math>, <math>Y=Y^{i}\frac{\partial}{\partial x^{i}}</math><br>
* [[접속 (connection)]]<br><math>\nabla_{X}Y = \sum_{k=1}^n\left( \sum_{i}X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+\sum_{i,j}\Gamma_{ij}^k X^{i}Y^{j} \right)\frac{\partial}{\partial x^{k}}</math><br>
+
* [[접속 (connection)]]:<math>\nabla_{X}Y = \sum_{k=1}^n\left( \sum_{i}X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+\sum_{i,j}\Gamma_{ij}^k X^{i}Y^{j} \right)\frac{\partial}{\partial x^{k}}</math><br>
*  다양체 M의 coordinate chart 에서 <math>\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)</math> 로 표현되는 곡선에 대한, 벡터장 <math>Y</math> 의 공변미분<br><math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}</math><br>
+
*  다양체 M의 coordinate chart 에서 <math>\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)</math> 로 표현되는 곡선에 대한, 벡터장 <math>Y</math> 의 공변미분:<math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}</math><br>
  
 
 
 
 
27번째 줄: 27번째 줄:
 
==평행이동==
 
==평행이동==
  
*  벡터장 <math>Y</math> 의 공변미분이 0일 때, 즉<br><math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}=0</math><br>
+
*  벡터장 <math>Y</math> 의 공변미분이 0일 때, 즉:<math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}=0</math><br>
  
 
 
 
 
35번째 줄: 35번째 줄:
 
==측지선==
 
==측지선==
  
* <math>Y=\alpha'(t)</math> 로 주어지는 경우,<br><math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{d^{2}x^{i}}{dt^{2}}+\Gamma_{jk}^i \frac{dx^j}{dt}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}</math><br><math>\frac{DY}{dt}= 0</math> 을 만족하는 경우, 곡선<math>\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)</math>를 [[측지선]] 이라 한다<br>
+
* <math>Y=\alpha'(t)</math> 로 주어지는 경우,:<math>\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{d^{2}x^{i}}{dt^{2}}+\Gamma_{jk}^i \frac{dx^j}{dt}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}</math>:<math>\frac{DY}{dt}= 0</math> 을 만족하는 경우, 곡선<math>\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)</math>를 [[측지선]] 이라 한다<br>
  
 
 
 
 

2013년 1월 12일 (토) 09:12 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

 

local expression

  • \(X=X^{i}\frac{\partial}{\partial x^{i}}\), \(Y=Y^{i}\frac{\partial}{\partial x^{i}}\)
  • 접속 (connection)\[\nabla_{X}Y = \sum_{k=1}^n\left( \sum_{i}X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+\sum_{i,j}\Gamma_{ij}^k X^{i}Y^{j} \right)\frac{\partial}{\partial x^{k}}\]
  • 다양체 M의 coordinate chart 에서 \(\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)\) 로 표현되는 곡선에 대한, 벡터장 \(Y\) 의 공변미분\[\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}\]

 

 

 

평행이동

  • 벡터장 \(Y\) 의 공변미분이 0일 때, 즉\[\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}=0\]

 

 

측지선

  • \(Y=\alpha'(t)\) 로 주어지는 경우,\[\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{d^{2}x^{i}}{dt^{2}}+\Gamma_{jk}^i \frac{dx^j}{dt}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}\]\[\frac{DY}{dt}= 0\] 을 만족하는 경우, 곡선\(\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)\)를 측지선 이라 한다

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트