"삼각함수의 무한곱 표현"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
32번째 줄: 32번째 줄:
  
 
* 1742년 오일러
 
* 1742년 오일러
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
 
 
 

2013년 1월 14일 (월) 16:57 판

이 항목의 수학노트 원문주소

 

 

개요

  • 사인함수의 무한곱표현

\[\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)\] 또는 \[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]

응용

  • 감마함수 의 다음 공식을 보이는데 응용할 수 있다

\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]

$$\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}$$

 

사인의 무한곱

\(\sin{\pi z} = \pi z \prod _{n\neq 0}^{} \left(1-\frac{z}{n}\right)e^{z/n}\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문