"삼각함수의 덧셈과 곱셈 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 +
* [[삼각함수에는 왜 공식이 많은가?]]
 +
 +
 +
==공대수==
 +
* [[공대수 (coalgebra)]]
 +
* 공대수 구조
 +
** <math> \{s,c\} </math> 를 기저로 갖는 벡터공간에 다음과 같은 comultiplication 과 counit 을 정의
 +
:<math>\mu(s)=s\otimes c+c\otimes s, \mu(c)=c\otimes c-s\otimes s</math>
 +
:<math>\epsilon(s)=0,\epsilon(c)=1</math>
 +
 +
 +
 +
==덧셈과 곱셈 공식 목록==
  
 
<math>\begin{array}{l}  \sin (\alpha +\beta )=\sin (\alpha ) \cos (\beta )+\cos (\alpha ) \sin (\beta ) \\  \sin (\alpha -\beta )=\sin (\alpha ) \cos (\beta )-\cos (\alpha ) \sin (\beta ) \\  \cos (\alpha +\beta )=\cos (\alpha ) \cos (\beta )-\sin (\alpha ) \sin (\beta ) \\  \cos (\alpha -\beta )=\sin (\alpha ) \sin (\beta )+\cos (\alpha ) \cos (\beta ) \end{array}</math>
 
<math>\begin{array}{l}  \sin (\alpha +\beta )=\sin (\alpha ) \cos (\beta )+\cos (\alpha ) \sin (\beta ) \\  \sin (\alpha -\beta )=\sin (\alpha ) \cos (\beta )-\cos (\alpha ) \sin (\beta ) \\  \cos (\alpha +\beta )=\cos (\alpha ) \cos (\beta )-\sin (\alpha ) \sin (\beta ) \\  \cos (\alpha -\beta )=\sin (\alpha ) \sin (\beta )+\cos (\alpha ) \cos (\beta ) \end{array}</math>

2013년 1월 22일 (화) 15:29 판

개요


공대수

  • 공대수 (coalgebra)
  • 공대수 구조
    • \( \{s,c\} \) 를 기저로 갖는 벡터공간에 다음과 같은 comultiplication 과 counit 을 정의

\[\mu(s)=s\otimes c+c\otimes s, \mu(c)=c\otimes c-s\otimes s\] \[\epsilon(s)=0,\epsilon(c)=1\]


덧셈과 곱셈 공식 목록

\(\begin{array}{l} \sin (\alpha +\beta )=\sin (\alpha ) \cos (\beta )+\cos (\alpha ) \sin (\beta ) \\ \sin (\alpha -\beta )=\sin (\alpha ) \cos (\beta )-\cos (\alpha ) \sin (\beta ) \\ \cos (\alpha +\beta )=\cos (\alpha ) \cos (\beta )-\sin (\alpha ) \sin (\beta ) \\ \cos (\alpha -\beta )=\sin (\alpha ) \sin (\beta )+\cos (\alpha ) \cos (\beta ) \end{array}\)

 

 

\(\sin{x} + \sin{y} = 2 \sin\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right)\)

\(\sin{x} - \sin{y} = 2 \cos\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\)

\(\cos{x} + \cos{y} = 2 \cos\left( \frac{x + y}{2} \right) \cos\left( \frac{x - y}{2} \right)\)

\(\cos{x} - \cos{y} = -2 \sin\left( \frac{x + y}{2} \right) \sin\left( \frac{x - y}{2} \right)\)

 

\(\sin{x} \cos{y} = {\sin(x + y) + \sin(x - y) \over 2}\)

\(\cos{x} \sin{y} = {\sin(x + y) - \sin(x - y) \over 2}\)

\(\cos{x} \cos{y} = {\cos(x + y) + \cos(x - y) \over 2}\)

\(\sin{x} \sin{y} = -{\cos(x + y) - \cos(x - y) \over 2}\)

 

 

 

재미있는 사실

  • 공식의 암기를 돕기 위해 다음과 같은 말들이 쓰여진 참고서도 있다

신프신은 두신코
신마신은 두코신
코프코는 두코코
코마코는 마두신신

신코는 반신프신
코신은 반신마신
코코는 반코프코
신신은 마반코마코

역사



메모



관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료