"리대수 sl(2,C)의 유한차원 표현론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[sl(2)의 유한차원 표현론]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
85번째 줄: 77번째 줄:
 
* [[파울리 행렬]]
 
* [[파울리 행렬]]
  
 
 
 
 
 
 
==수학용어번역==
 
  
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTllDZlBkcXRyUkk/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTllDZlBkcXRyUkk/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
  
 
 
 
 
134번째 줄: 98번째 줄:
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2013년 2월 24일 (일) 03:16 판

개요

  • 리대수 \(\mathfrak{sl}(2)\)

 

 

리대수 \(\mathfrak{sl}(2)\)

  • 3차원 리대수 \[E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\] \[F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\] \[H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\]
  • \(L=\langle E,F,H \rangle\)
  • commutator\[[E,F]=H\]\[[H,E]=2E\]\[[H,F]=-2F\]
  • universal enveloping algebra의 PBW 기저 \(\{F^kH^lE^m|k,l,m\geq 0\}\)

 

 

highest weight representation

  • \(\mathbb{F}\) : algebraically closed field with characteristic 0
  • \(V\) :유한차원인 기약표현
  • \(V=\oplus_{\lambda\in\mathbb{F}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)
  • \(\lambda\in \mathbb{F}\) 에 대하여, highest weight vector \(v_0\) 를 정의\[Ev_0=0\]\[Hv_0=\lambda v_0\]
  • \(v_j:=\frac{F^j}{j!}v_0\) 로 정의하면, 다음 관계가 만족된다\[H v_j=(\lambda -2j)v_j\]\[F v_j=(j+1)v_{j+1}\]\[E v_j=(\lambda -j+1)v_{j-1}\]
  • \(\{v^j|j\geq 0\}\) 가 생성하는 벡터공간이 유한차원인 L-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다

 

 

유한차원 기약표현의 분류

  • 각 \(m\geq 0\) 에 대하여, m+1 차원 기약표현 \(V(m)\)가 존재한다
  • 모든 유한차원 기약표현 \(V\)에 대하여 적당한 \(m\geq 0\)에 대하여 \(V\simeq V(m)\)

 

 

파울리 행렬

  • 파울리 행렬의 선형결합으로 리대수 $\mathfrak{sl}(2)$ 의 원소를 표현할 수 있으며, 특별히 생성원 $E,F$는 raising and lowering 연산자로 불리며 다음과 같이 표현된다 $$H=\sigma_{z}=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}$$ $$E=\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}$$ $$F=\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}$$ $$[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}$$

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들


매스매티카 파일 및 계산 리소스

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트