"Q-series 의 공식 모음"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 수학노트 원문주소</h5> | |
* [[q-series 의 공식 모음]] | * [[q-series 의 공식 모음]] | ||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* [[합공식의 q-analogue]]<br> | * [[합공식의 q-analogue]]<br> | ||
45번째 줄: | 45번째 줄: | ||
− | + | ==q-이항정리</h5> | |
* [[q-이항정리]]<br> | * [[q-이항정리]]<br> | ||
55번째 줄: | 55번째 줄: | ||
− | + | ==무한곱 공식</h5> | |
* [[자코비 삼중곱(Jacobi triple product)]]<br><math>\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math><br> | * [[자코비 삼중곱(Jacobi triple product)]]<br><math>\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)</math><br> | ||
66번째 줄: | 66번째 줄: | ||
− | + | ==역사</h5> | |
77번째 줄: | 77번째 줄: | ||
− | + | ==메모</h5> | |
87번째 줄: | 87번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
93번째 줄: | 93번째 줄: | ||
− | + | ==수학용어번역</h5> | |
* 단어사전<br> | * 단어사전<br> | ||
110번째 줄: | 110번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* | * | ||
125번째 줄: | 125번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
137번째 줄: | 137번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
145번째 줄: | 145번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
155번째 줄: | 155번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 10월 31일 (수) 09:37 판
==이 항목의 수학노트 원문주소
==개요
\(\lim_{z\to\infty}\frac{(z)_{n}}{z^{n}}=(-1)^{n}q^{\frac{n(n-1)}{2}}\)
\((q^{l+1};q)_{n}=\frac{(q;q)_{n+l}}{(q;q)_{l}}\) or \((q^{l};q)_{n}=\frac{(q;q)_{n+l-1}}{(q;q)_{l-1}}\)
\(l\geq n\), \((q^{-l};q)_{n}=(-1)^nq^{n(n-1)/2-nl}(q^{l-n+1};q)_n=(-1)^nq^{n(n-1)/2-nl}\frac{(q;q)_{l}}{(q;q)_{l-n}}\)
\((-q)_{n}=\frac{(q^2;q^2)_{n}}{(q;q)_{n}}\)
\((-q;q)_{2n+1}=(-q)_{2n}(1+q^{2n+1})=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}(1+q^{2n+1})\)
\((q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}\)
\((-q)_{2n}=\frac{(q^2;q^2)_{2n}}{(q;q)_{2n}}=\frac{(q^2;q^4)_{n}(q^4;q^4)_{n}}{(q;q^2)_{n}(q^2;q^2)_{n}}\)
\(\frac{(-q)_{n}}{(q)_{2n}}=\frac{1}{(q;q^2)_{n}(q;q)_{n}}\)
\((a)_{n+r}=(a)_{n}(aq^{n})_{r}\)
\((-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}\)
\((-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}\)
\(W(q)=(-q)_{\infty}=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(q)_{n}}=\frac{(q^{2};q^{2})_{\infty}}{(q;q)_{\infty}}\)
==q-이항정리
- q-이항정리
-
가우스 공식
\(\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\) - 하이네 공식
\(\prod_{r=0}^{n-1}\frac{1}{1-zq^r}=\sum_{r=0}^{\infty} \begin{bmatrix} n+r-1\\ r\end{bmatrix}_{q} z^r\)
==무한곱 공식
- 자코비 삼중곱(Jacobi triple product)
\(\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\) - quintuple product identity
==역사
==메모
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
==수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
==관련도서