"루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 201번째 줄: | 201번째 줄: | ||
* http://www.ams.org/mathscinet  | * http://www.ams.org/mathscinet  | ||
* http://dx.doi.org/  | * http://dx.doi.org/  | ||
| + | [[분류:리군과 리대수]]  | ||
2013년 3월 9일 (토) 10:06 판
개요
- 루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다
- non-zero eigenvalues of Cartan subalgebra
 
 - non-zero eigenvalues of Cartan subalgebra
 - 리군과 리대수의 분류, 격자의 분류, 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 등에서 중요하게 활용
 - 딘킨 다이어그램은 루트 시스템을 표현하는 그래프이다
 
정의
- E를 내적이 주어진 유클리드 벡터공간이라 하자.
 - 다음 조건을 만족시키는 E의 유한인 부분집합 \(\Phi\)를 루트 시스템이라 한다.
- \(\Phi\)는 E를 스팬(span)하며 \(0 \not \in \Phi\)
 - (reduced) \(\alpha \in \Phi\), \(\lambda \alpha \in \Phi \iff \lambda=\pm 1\)
 - \(\alpha,\beta \in \Phi\)이면 \(\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi\)
 - \(\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}\)
 
 - 마지막 조건을 crystallographic 또는 integraliy 조건이라 한다
 - a subgroup of \(GL(V)\) is crystallographic if it stabilizes a lattice L in V
 - e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice
 
딘킨 다이어그램 (Dynkin diagram)
- first draw the simple roots as nodes
 - draw \(4(e_i, e_j)^2\)lines for two roots \(e_i, e_j\)\[\frac{\pi}{2}\] , \(\frac{\pi}{3}\), \(\frac{\pi}{4}\), \(\frac{\pi}{6}\)
0,1,2,3 lines 
2차원 루트 시스템의 분류
- \(A_1\times A_1\), \(A_2\), \(B_2\), \(G_2\)
 
A1 x A1
http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+(4theta)
A2
http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+(6theta)
B2
http://www.wolframalpha.com/input/?i=r%3D1-+(sqrt2+%2B1)^2+cos+(4theta)
G2
http://www.wolframalpha.com/input/?i=r%3D1-(sqrt+3+%2B1)^2cos+(6theta)/2
ADE 의 분류
(0) G cannot contain affine A_n, D_n, E_n
(1) G is a tree (contains no cycles = affine A_n)
(2) G has \leq 1 branch point (does not contain affine D_5, D_6,D_7, )
(3)  branch point has order \leq 3 (affine D_4)
 What are length of legs of G?
Leg of length 0 -> G=A_n
so assume legs have length \geq 1
(4) Not all legs have length \geq 2 : cannot contain affine E_6
so one leg has length 1
2 legs of length 1 : G is D_n
so can assume 2 other legs have length \geq 2
(5) cannot have 2 legs length \geq 3 because of affine E_7
So G has 1 leg length 1, 1 of length 2, one of length \geq 2
length is \leq 4, as G does not contain affine E_8
So G is E6,E7, E8
일반적인 경우
- how to classify all connected admissible diagrams
- subdiagram is also admissible
 - there are at most (n-1) pairs of nodes
 - no node has more than 3 lines
 - study double lines and triple nodes
 
 
reflection groups
- B_n, C_n, BC_n -> same reflection group (Z/nZ).S_n
 -  
 
역사
메모
- \(\bullet - \bullet\)
 - http://demonstrations.wolfram.com/2DRootSystems/
 - reflection groups
 - lie algebras
 - Lie groups
 - algebraic groups
 - surfaces singularities
 - quiver
 - Platonic Solids
 
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
 - 발음사전 http://www.forvo.com/search/
 - 대한수학회 수학 학술 용어집
 - 남·북한수학용어비교
 - 대한수학회 수학용어한글화 게시판
 
사전 형태의 자료
- http://en.wikipedia.org/wiki/root_systems
 - http://en.wikipedia.org/wiki/Dynkin_diagram
 - http://en.wikipedia.org/wiki/Coxeter_number
 
관련논문
- Two Amusing Dynkin Diagram Graph Classifications Robert A. Proctor, The American Mathematical Monthly, Vol. 100, No. 10 (Dec., 1993), pp. 937-941
 - http://www.jstor.org/action/doBasicSearch?Query=
 - http://www.ams.org/mathscinet
 - http://dx.doi.org/
 



