"Q-이항계수 (가우스 다항식)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
개요==
양자평면==
q-이항계수==
점화식==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[q-이항계수 (가우스 다항식)|q-이항계수(가우스 다항식)]]<br> | * [[q-이항계수 (가우스 다항식)|q-이항계수(가우스 다항식)]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* [[이항계수와 조합|이항계수]]의 q-analogue<br> | * [[이항계수와 조합|이항계수]]의 q-analogue<br> | ||
19번째 줄: | 19번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">양자평면 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">양자평면== |
* 세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>yx=qxy,xq=qx,yq=qy</math><br> | * 세 변수 <math>x,y,q</math> 사이에 다음과 같은 관계를 정의<br><math>yx=qxy,xq=qx,yq=qy</math><br> | ||
31번째 줄: | 31번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-이항계수 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-이항계수== |
* 정의<br><math>{n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> 풀어쓰면 다음과 같다<br><math>{n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}</math><br> | * 정의<br><math>{n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}</math><br> 풀어쓰면 다음과 같다<br><math>{n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}</math><br> | ||
41번째 줄: | 41번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">점화식 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">점화식== |
* [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br> | * [[이항계수와 조합]]에서 얻은 식의 q-analogue<br><math>{n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q</math><br> | ||
50번째 줄: | 50번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사== |
62번째 줄: | 62번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모== |
* http://www.wolframalpha.com/input/?i=q-binomial+coefficient<br> | * http://www.wolframalpha.com/input/?i=q-binomial+coefficient<br> | ||
73번째 줄: | 73번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들== |
* [[이항계수와 조합]]<br> | * [[이항계수와 조합]]<br> | ||
81번째 줄: | 81번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
92번째 줄: | 92번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
105번째 줄: | 105번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
114번째 줄: | 114번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서== |
* 도서내검색<br> | * 도서내검색<br> |
2012년 11월 1일 (목) 09:21 판
이 항목의 스프링노트 원문주소==
개요==
- 이항계수의 q-analogue
- 가우스 다항식(Gaussian polynomial)으로 불리기도 한다
- q-이항계수의 목록
양자평면==
- 세 변수 \(x,y,q\) 사이에 다음과 같은 관계를 정의
\(yx=qxy,xq=qx,yq=qy\)
- 거듭제곱의 전개
\((x+y)=x+y\)
\((x+y)^2=x^2+(1+q)xy+y^2\)
\((x+y)^3=x^3+(1+q+q^2)x^2y+(1+q+q^2)xy^2+y^3\)
\((x+y)^4=x^4+(1+q+q^2+q^3)x^3y+\left(1+q^2\right) \left(1+q+q^2\right)x^2y^2+(1+q+q^2+q^3)xy^3+y^4\)
- 여기서 등장하는 계수들을 q-이항계수로 정의하고자 한다
\(yx=qxy,xq=qx,yq=qy\)
\((x+y)=x+y\)
\((x+y)^2=x^2+(1+q)xy+y^2\)
\((x+y)^3=x^3+(1+q+q^2)x^2y+(1+q+q^2)xy^2+y^3\)
\((x+y)^4=x^4+(1+q+q^2+q^3)x^3y+\left(1+q^2\right) \left(1+q+q^2\right)x^2y^2+(1+q+q^2+q^3)xy^3+y^4\)
q-이항계수==
- 정의
\({n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\)
풀어쓰면 다음과 같다
\({n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}\)
- 예
\({4 \choose 1}_q=1+q+q^2+q^3\)
\({4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4\)
\({5 \choose 1}_q=1+q+q^2+q^3+q^4\)
\({5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
- \(n\)이 작을 경우에 대한 q-이항계수의 목록 참조
\({n \choose r}_q=\frac{[n]_q!}{[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\)
풀어쓰면 다음과 같다
\({n \choose r}_q=\frac{(1-q^n)\cdots(1-q^{n-r+1})}{(1-q^r)\cdots(1-q^{1})}\)
\({4 \choose 1}_q=1+q+q^2+q^3\)
\({4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4\)
\({5 \choose 1}_q=1+q+q^2+q^3+q^4\)
\({5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
점화식==
- 이항계수와 조합에서 얻은 식의 q-analogue
\({n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q\)
- 예 q-이항계수의 목록 항목 참조
\({4\choose 1}_q+q^2{4\choose 2}_q={5\choose 2}_q\)
\(1+q+q^2+q^3+q^2(1+q+2q^2+q^3+q^4)=1+q+q^2+q^3+q^4+q^2(1+q+q^2+q^3+q^4)=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
\({n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q\)
\({4\choose 1}_q+q^2{4\choose 2}_q={5\choose 2}_q\)
\(1+q+q^2+q^3+q^2(1+q+2q^2+q^3+q^4)=1+q+q^2+q^3+q^4+q^2(1+q+q^2+q^3+q^4)=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)